
Introduction au langage VBScript par
l’exemple

Serge Tahé, janvier 2002

Ce site a été créé avec le convertisseur [Word ou ODT - > HTML] créé par l’IA Gemini 3 en janvier 2026.

https://tahe.developpez.com - Ce cours tutoriel écrit par Serge Tahé est mis à disposition du public selon les termes de la Licence Creative Commons Attribution – Pas d’Utilisation Commerciale –
Partage dans les Mêmes Conditions 3.0 non transposé. 1/70

https://tahe.developpez.com/
https://stahe.github.io/word-odt-vers-html-janv-2026/
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.fr
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.fr

 1 Introduction

Le PDF de ce document est disponible |ICI|.

Ce document a pour but de fournir les bases du langage vbscript ainsi que des exemples d'utilisation dans
différents domaines. VBScript est un langage de script sous Windows. Il peut fonctionner dans différents
conteneurs tels

 Windows Scripting Host pour une utilisation directe sous Windows notamment pour écrire des scripts
d'administration système

 Internet Explorer. Il est alors utilisé au sein de pages HTML auxquelles il amène une certaine
interactivité impossible à atteindre avec le seul langage HTML.

 Internet Information Server (IIS) le serveur Web de Microsoft sur NT/2000 et son équivalent Personal Web
Server (PWS) sur Win9x. Dans ce cas, vbscript est utilisé pour faire de la programmation côté serveur
web, technologie appelée ASP (Active Server Pages) par Microsoft.

Par ailleurs, VBSCRIPT étant un langage dérivé de Visual Basic pour Windows, il peut servir d'introduction à
ce langage parmi les plus répandus dans le domaine Windows ainsi qu'à la version Application de VB, appelée
VBA (Visual Basic pour Applications). VBA est utilisé par exemple dans tout la suite Office de Microsoft
notamment dans Excel. Ainsi VBSCRIPT est une voie d'entrée au développement dans un vaste domaine
d'applications windows.

VBScript n'est pas un langage à objets même s'il en a une certaine coloration. La notion d'héritage, par
exemple, n'existe pas. Il peut cependant utiliser les objets mis à sa disposition par le conteneur dans lequel il
s'exécute ainsi que plus généralement les composants ActiveX disponibles sur la machine Windows. C'est cet
aspect qui donne sa puissance à VBScript, langage qui intrinsèquement est assez pauvre mais qui grâce aux
objets mis à sa disposition peut rivaliser avec des langages de script au départ plus riches tels Perl, Javascript,
Python. C'est un langage simple à apprendre, à utiliser et qui ouvre la voie à l'utilisation de Visual Basic pour
Windows dont il est directement dérivé.

Ce document n'est pas un cours d'algorithmique. L'art de la programmation est supposé acquis. Un
travail de lecture actif est nécessaire. La meilleure façon d'utiliser ce document est probablement de tester sur
sa propre machine les exemples qui y sont donnés. Le conteneur WSH est normalement livré en standard
avec le système Windows. La version la plus récente est disponible gratuitement sur le site de Microsoft
(http://www.microsoft.com). Pour trouver l'URL exacte permettant le téléchargement de WSH, on pourra
chercher les mots clés "Windows Scripting" avec un moteur de recherche sur le Web. Parmi les réponses, on
devrait trouver l'URL de téléchargement de WSH.

Serge Tahé, janvier 2002

https://tahe.developpez.com - Ce cours tutoriel écrit par Serge Tahé est mis à disposition du public selon les termes de la Licence Creative Commons Attribution – Pas d’Utilisation Commerciale –
Partage dans les Mêmes Conditions 3.0 non transposé. 2/70

https://tahe.developpez.com/
https://stahe.github.io/vbscript-janv-2002/vbscript-janv-2002.pdf
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.fr
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.fr

 2 Les contextes d'exécution de VBSCRIPT

 2.1 Introduction

Un programme vbscript ne s'exécute pas directement sous Windows mais dans un conteneur qui
lui fournit un contexte d'exécution et un certain nombre d'objets qui lui sont propres. Par ailleurs,
le programme vbscript peut utiliser des objets mis à sa disposition par le système Windows,
objets appelés objets ActiveX.

Dans ce document, nous utiliserons deux conteneurs : Windows Scripting Host appelé couramment
WSH et le navigateur Internet Explorer appelé parfois par la suite IE. Il en existe bien d'autres.
Ainsi, les applications MS-Office sont des conteneurs pour un dérivé de VB appelé VBA (Visual
Basic pour Applications). Il existe par ailleurs de nombreuses applications windows qui
permettent à leurs utilisateurs de dépasser les limites de celle-ci en leur permettant de développer
des programmes s'exécutant au sein de l'application et utilisant les objets propres à celle-ci.

Le conteneur dans lequel s'exécute le programme vbscript joue un rôle primordial :

 les objets mis à disposition du programme vbscript par le conteneur changent d'un
conteneur à l'autre. Ainsi WSH met à disposition d'un programme vbs un objet appelé
WScript qui donne accès, par exemple, aux partages et imprimantes réseau de la machine
hôte. IE lui, met à disposition du programme vbs, un objet appelé document qui représente
la totalité du document HTML visualisé. Le programme vbs va alors pouvoir agir sur ce
document. Excel lui met à disposition d'un programme VBA des objets représentant des
classeurs, des feuilles de classeurs, des graphiques, etc.... en fait tous les objets manipulés
par Excel.

 si les objets d'un conteneur donnent toute sa puissance à un programme vbscript, il peut
parfois en limiter certains domaines. Ainsi un programme vbscript exécuté dans le
navigateur IE ne peut pas accéder au disque de la machine hôte, ceci pour des raisons de
sécurité.

Donc, lorsqu'on parle de programmation vbscript, il faut indiquer dans quel conteneur le

3

programme est exécuté.

Sous windows, vbscript n'est pas le seul langage utilisable dans les conteneurs WSH ou IE. On
peut par exemple utiliser JScript (=JavaScript), PerlScript (=Perl), Python, ... Nombre de ces
langages semblent de prime abord supérieurs à vbscript. Mais ce dernier a cependant de sérieux
atouts :

 VB et ses déclinaisons VBSCRIPT et VBA sont très répandues sur les machines windows.
Connaître ce langage paraît indispensable.

 C'est davantage les objets utilisables par un programme que le langage utilisé par celui-ci
qui font sa puissance. Or nombre de ces objets sont fournis par les conteneurs et non par
les langages eux-mêmes.

Un inconvénient de VBSCRIPT est qu'il n'est pas portable sur un système autre que Windows,
par exemple Unix. Ses concurrents Javascript, Perl, Python eux le sont. Si on doit travailler sur
des systèmes hétérogènes, il peut être intéressant voire indispensable d'utiliser le même langage
sur les différents systèmes.

 2.2 Le conteneur WSH

Le conteneur WSH (Windows Scripting Host) permet l'exécution, au sein de Windows, de
programmes écrits en divers langages : vbscript, javascript, perlscript, python, ... Il existe une
norme à respecter pour qu'un langage puisse être utilisé au sein de WSH. Tout langage respectant
cette norme est candidat à l'exécution au sein de WSH. On peut imaginer que la liste précédente
des langages s'exécutant dans WSH puisse s'allonger. Un conteneur met à la disposition des
programmes qu'il exécute des objets qui leur donnent leur véritable puissance. Ceci tend à
gommer les différences entre langages puiqu'ils utilisent alors tous le même ensemble d'objets.
Utiliser un langage plutôt qu'un autre peut devenir alors une simple affaire de goût plutôt que de
performances.

L'exécution d'un programme dans WSH se fait à l'aide de deux exécutables : wscript.exe et
cscript.exe. wscript.exe se trouve normalement dans le répertoire d'installation de windows appelé
généralement %windir% :

1. C:\ >echo %windir%
2. C:\WINDOWS
3.
4. C:\>dir c:\windows\wscript.exe
5. WSCRIPT EXE 123 280 19/09/01 11:54 wscript.exe
6.
7. L'exécutable cscript.exe se trouve lui sous %windir%\command :
8.
9. C:\>dir c:\windows\cscript.* /s
10.
11. Répertoire de C:\WINDOWS\COMMAND
12. CSCRIPT EXE 102 450 26/06/01 17:49 cscript.exe

Le w de wscript veut dire windows et le c de cscript veut dire console. Un script peut être exécuté
indifféremment par wscript ou cscript. La différence réside dans le mode d'affichage de messages
à l'écran :

 wscript les affiche dans une fenêtre
 cscript les affiche à l'écran

Voici un script coucou.vbs qui affiche coucou à l'écran :

4

Ouvrons une fenêtre DOS et exécutons-le successivement avec wscript et cscript :

DOS>wscript coucou.vbs

DOS>cscript coucou.vbs

Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001. Tous droits réservés.

coucou

On voit ci-dessus clairement la différence entre les deux modes. Dans ce document, nous
utiliserons quasi exclusivement le mode console cscript. C'est le mode qui convient aux
applications dites "batch" c'est à dire des applications sans interaction avec un utilisateur au
clavier. On notera deux points dans les résultats précédents :

1. On a supposé que les exécutables wscript.exe et cscript.exe étaient tous les deux dans le
"PATH" de la machine, ce qui permet de les lancer en tapant simplement leurs noms. Si
ce n'était pas le cas, il aurait fallu écrire ici :

DOS>c:\windows\wscript coucou.vbs
DOS>c:\windows\command\cscript coucou.vbs

2. On notera que la version de wsh utilisée dans cet exemple et dans la suite du document
est la version 5.6.

3. Le fichier source du script a le suffixe .vbs. C'est le suffixe désignant un script vbscript, un
script javascript étant lui désigné par le suffixe .js.

Le programme cscript a diverses options de lancement qu'on obtient en lançant cscript sans
arguments :

1. DOS>cscript
2.
3. Microsoft (R) Windows Script Host Version 5.6
4. Copyright (C) Microsoft Corporation 1996-2001. Tous droits réservés.
5.
6. Utilisation : CScript scriptname.extension [option...] [arguments...]
7.
8. Options:
9. //B batch : Supprime l'affichage des invites et des erreurs de scripts
10. //D Activer le débogage
11. //E:engine Utiliser le moteur pour l'exécution de script
12. //H:CScript Remplace l'environnement d'exécution de scripts par défaut par CScript.exe
13. //H:WScript tRemplace l'environnement d'exécution de scripts par défaut par WScript.exe (default)
14. //I Mode interactif (par défaut, contraire de l'option //B)
15. //Job :xxxx Exécuter une tâche WSF
16. //Logo Afficher un logo (default)
17. //Nologo Empêcher l'affichage d'un logo : Aucune bannière ne s'affiche pendant la durée d'exécution
18. //S Enregistrer les options de ligne de commande actuelles pour cet utilisateur
19. //T:nn Durée d'exécution en secondes : Temps maximal autorisé pour l'exécution d'un script
20. //X Exécuter un script dans le débogueur

5

L'argument //nologo supprime l'affichage de la bannière de wsh :

1. C:\>cscript //nologo coucou.vbs
2. coucou

 2.3 La forme d'un script WSH

Nous venons de voir un premier script : coucou.vbs

Nous avons indiqué que le suffixe .vbs du fichier désignait un script vbscript. Ce n'est pas une
obligation. Nous aurions pu mettre le script dans un fichier de suffixe .wsf sous la forme suivante
plus complexe :

L'exécution de ce script donne la chose suivante :

1. C:\>cscript //nologo coucou2.wsf
2. coucou

Un script WSH peut mélanger les langages :

L'exécution de ce script donne la chose suivante :

1. C:\>cscript //nologo coucou3.wsf
2. coucou (vbscript)
3. coucou (javascript)
4. coucou (perlscript)

Nous retiendrons les points suivants :

1. Le conteneur WSH n'est pas lié à un langage. Un script wsh peut mélanger les langages
dans un fichier de suffixe .wsf

2. Le script est alors encadré par des balises <job id="..."> ... </job>
3. A l'intérieur de l'application (=job), les langages utilisés par les différentes portions de

code sont balisées par <script language="...."> </script>

6

4. Ce langage de balisages porte un nom : XML pour eXtended Markup Language. XML ne
définit aucune balise mais des règles d'agencement de balises. Ici on devrait donc dire que
le langage de balisages utilisé dans un script wsh suit la norme XML.

Par la suite, nous utiliserons exclusivement vbscript dans des fichiers .vbs.

 2.4 L'objet WSCRIPT

Le conteneur WSH met à la disposition des scripts qu'il exécute un objet appelé wscript. Un objet
a des propriétés et des méthodes :

Un objet Obj a des propriétés Pi qui fixent son état. Ainsi un objet thermomètre peut avoir une
propriété température. Cette propriété est un des aspects de l'état du thermomètre. Une autre
pourrait être la température maximale Tmax qu'il peut supporter.

L'objet Obj peut avoir des méthodes Mj qui permettent à des agents extérieurs soit de :
 connaître son état
 changer son état

Ainsi notre thermomètre, s'il est électronique, pourrait avoir une méthode allumer qui le mettrait
en marche, une autre éteindre qui l'éteindrait, une autre afficher qui afficherait la température
d'équilibre une fois celle-ci atteinte. En termes de programmation, une méthode est une fonction
qui peut admettre des arguments et rendre des résultats.

En Vbscript, les propriétés Pi d'un objet Obj sont notées Obj.Pi et les méthodes Mj sont notées
Obj.Mj. L'objet wscript de WSH est un objet important pour les méthodes qu'il met à disposition
des scripts. Ainsi sa méthode echo permet d'afficher un message. La syntaxe de cette méthode est
la suivante :

wscript.echo arg1, arg2, ..., argn

Les valeurs des arguments argi sont alors affichées dans une fenêtre (exécution par wscript) ou à
l'écran (exécution par cscript sous DOS).

 2.5 Le conteneur Internet Explorer

Nous avons écrit plus haut que Internet Explorer pouvait être un conteneur pour un script
vbscript. Montrons-le sur un exemple simple. Suit une page HTML (HyperText Markup
Language) appelée coucou2.htm ne contenant pas de script vbscript.

7

Son chargement direct par Internet Explorer (Fichier/Ouvrir) donne les résultats suivants :

Le contenu du fichier coucou2.htm nous montre que HTML est un langage de balisage. Connaître
le langage HTML c'est connaître ces balises. Celles-ci ont pour but principal d'indiquer au
navigateur comment afficher un document. HTML ne suit pas exactement la norme XML mais
en est proche.
Dans coucou2.htm, il y a deux informations à représenter notées 1 et 2. Nous les avons
représentées également dans l'affichage qui en a été fait. C'est la balise <title>...</title> qui a fait
que l'information 1 a été placée dans la barre de titre du navigateur et la balise <body>..</body>
qui a fait que l'information 2 a été placée dans la partie document du navigateur.

Nous n'entrerons pas davantage dans l'étude du langage HTML. Modifions le fichier coucou2.htm
en y introduisant un script vbscript et appelons-le maintenant coucou1.htm :

Le script vbscript a été placé dans la balise <head>...</head>. Il aurait pu être placé ailleurs. Il
affiche "coucou" au chargement initial de la page. Ici, le navigateur doit être Internet Explorer car
seul ce navigateur est par défaut un conteneur pour des scripts vbscript. L'affichage obtenu est
alors le suivant :

8

2

1

suivi de l'affichage normal de la page :

Le script exécuté était le suivant :

Alors que le conteneur WSH mettait à disposition du script un objet appelé wscript permettant de
faire des affichages avec sa méthode echo, ici IE met à disposition du script un objet window
permettant de faire des affichages avec la méthode alert. Ainsi pour afficher "coucou", on écrit
wscript.echo "coucou" dans WSH et window.alert "coucou" dans IE. On peut montrer ici aussi qu'en fait
on peut utiliser plusieurs langages dans le conteneur IE. Nous reprenons l'exemple déjà présenté
dans WSH au sein d'une page coucou3.htm :

Le chargement de cette page par IE affiche tout d'abord trois fenêtres d'information :

9

avant d'afficher la page finale :

 2.6 L'aide de WSH

WSH vient avec un système d'aide situé habituellement dans le dossier "C:\Program
Files\Microsoft Windows Script\ScriptDocs". pour la version 5.6 de WSH, le fichier d'aide
s'appelle "SCRIPT56.CHM". Il suffit de double-cliquer sur ce fichier pour avoir accès à l'aide. Il
peut être pratique d'en avoir un raccourci sur son bureau.

Une fois lancé, on a quelque chose comme suit :

On y trouve l'aide du conteneur WSH mais également celle pour les langages vbscript et
javascript. C'est un outil indispensable à la fois pour le débutant et le programmeur confirmé. Il y
a plusieurs façons de travailler avec cette aide :

 on ne sait pas trop ce qu'on cherche. On veut simplement découvrir ce qui est proposé.
L'onglet Sommaire ci-dessus peut être alors utilisé. On peut par exemple regarder ce qui est
proposé pour vbscript :

10

Vous découvrirez dans l'aide de VBscript de nombreuses informations qui ne sont pas dans ce
document.

 vous pouvez chercher quelque chose de précis, par exemple la façon d'utiliser la fonction
msgbox de VBscript. Utilisez alors l'onglet Rechercher :

11

L'aide ramène toutes les rubriques qui ont un rapport avec le mot recherché. En général, les
premières rubriques proposées sont les plus pertinentes. C'est le cas ici où la première rubrique
proposée est la bonne. Il suffit de double-cliquer dessus pour avoir l'information de cette
rubrique :

12

 3 Les bases de la programmation VBSCRIPT

Après avoir décrit les contextes d'exécution possibles pour un script vbscript, nous abordons
maintenant le langage lui-même. Dans toute la suite, nous nous plaçons dans les conditions
suivantes :

1. le conteneur du script est WSH
2. le script est placé dans un fichier de suffixe .vbs

Pour présenter un concept, nous opérons en général de la façon suivante :
 on introduit le concept si besoin est
 on présente un programme d'illustration avec ses résultats
 on commente les résultats et le programme si besoin est

Les conteneurs vbscript ne sont pas sensibles à la "casse" utilisée (majuscules/minuscules) dans le
texte du script. Aussi pourra-t-on écrire indifféremment wscript.echo "coucou" ou WSCRIPT.ECHO
"coucou".

Les programmes présentés dans la suite font beaucoup d'écritures à l'écran aussi allons-nous
présenter de nouveau les méthodes d'écriture de l'objet wscript.

 3.1 Afficher des informations

Nous avons déjà utilisé la méthode echo de l'objet wscript mais ce dernier a d'autres méthodes
permettant d'écrire à l'écran comme le montre le script suivant :

Programme Résultats
1. un
2. deuxtrois
3. quatre
4. cinq

On notera les points suivants :

 Toute texte placé après une apostrophe est considéré comme un commentaire du script et
n'est pas interprété par WSH (ligne 1).

 la méthode echo écrit ses arguments et passe à la ligne suivante de même que la méthode
writeLine (lignes 2 et 6)

 la méthode write écrit ses arguments et ne passe pas à la ligne suivante (ligne 3)
 une marque de fin de ligne est représentée par la suite de deux caractères de codes ASCII

13 et 10. Ainsi ligne 4 est-elle représentée par l'expression chr(13) & chr(10) où chr(i) est
le caractère de code ASCII i et & l'opérateur de concaténation de chaîne. Ainsi "chat" &
"eau" est la chaîne "chateau".

 la marque de fin de ligne peut être représentée plus facilement par la constante vbCRLF
(ligne 5)

 3.2 Ecriture des instructions dans un script Vbscript

Par défaut, on écrit une instruction par ligne. Néanmoins, on peut écrire plusieurs instructions
par ligne en les séparant par le caractère : comme dans inst1:inst2:inst3. Si une ligne est trop
longue, on peut la découper en morceaux. Il faut alors que les différentes parties de l'instruction
soient terminées par les deux caractères (espace)_. Nous reprenons l'exemple précédent en
réécrivant différemment les instructions :
http://tahe.developpez.com 13

Programme Résultats
1. un
2. deuxtrois
3. quatre
4. cinq

 3.3 Écrire avec la fonction msgBox

Si dans ce document, nous utilisons quasi exclusivement l'objet wscript pour écrire à l'écran, il
existe une fonction plus sophistiquée pour afficher des informations dans une fenêtre cette fois-
ci. C'est la fonction msgbox qui s'utilise en général avec trois paramètres :

msgbox message, icônes+boutons, titre
 message est le texte du message à afficher
 icônes+boutons (facultatif) est en fait un nombre qui indique le type d'icône et les

boutons à placer dans la fenêtre du message. Ce nombre est le plus souvent la somme de
deux nombres : le premier détermine l'icône, le second les boutons

 titre est le texte à placer dans la barre de titre de la fenêtre de message

Les valeurs à utiliser pour préciser l'icône et les boutons de la fenêtre d'affichage sont les
suivantes :

Constante Valeur Description
vbOKOnly 0 Affiche uniquement le bouton OK.
vbOKCancel 1 Affiche les boutons OK et Annuler.
vbAbortRetryIgnore 2 Affiche les boutons Abandon, Réessayer et Ignorer.
vbYesNoCancel 3 Affiche les boutons Oui, Non et Annuler.
vbYesNo 4 Affiche les boutons Oui et Non.
vbRetryCancel 5 Affiche les boutons Réessayer et Annuler.
vbCritical 16 Affiche l'icône Message critique.
vbQuestion 32 Affiche l'icône Demande d'avertissement.
vbExclamation 48 Affiche l'icône Message d'avertissement.
vbInformation 64 Affiche l'icône Message d'information.
vbDefaultButton1 0 Le premier bouton est le bouton par défaut.
vbDefaultButton2 256 Le deuxième bouton est le bouton par défaut.
vbDefaultButton3 512 Le troisième bouton est le bouton par défaut.
vbDefaultButton4 768 Le quatrième bouton est le bouton par défaut.
vbApplicationModal 0 Application modale ; l'utilisateur doit répondre au message

avant de continuer à travailler dans l'application courante.
vbSystemModal 4096 Système modal ; toutes les applications sont suspendues

jusqu'à ce que l'utilisateur réponde au message.

Voici des exemples :

Programme

http://tahe.developpez.com 14

Résultats

Dans certains cas, on présente une fenêtre d'information qui est également une fenêtre de saisie.
Si on pose une question, on veut par exemple savoir si l'utilisateur a cliqué sur le bouton oui ou
sur le bouton non. La fonction msgBox rend un résultat que dans le programme précédent nous
n'avons pas utilisé. Ce résultat est un nombre entier représentant le bouton utilisé par l'utilisateur
pour fermer la fenêtre d'affichage :

Constante Valeur Bouton choisi
vbOK 1 OK
vbCancel 2 Annuler
vbAbort 3 Abandon
vbRetry 4 Réessayer
vbIgnore 5 Ignorer
vbYes 6 Oui
vbNo 7 Non

Le programme suivant montre l'utilisation du résultat de la fonction msgBox. On présente 4 fois
une fenêtre avec les boutons oui, non, annuler. On répond de la façon suivante :

1. on clique sur oui
2. on clique sur non
3. on clique sur annuler
4. on ferme la fenêtre sans utiliser de bouton. Le programme montre que cela revient à

utiliser le bouton Annuler.

http://tahe.developpez.com 15

Programme

Résultats

 3.4 Les données utilisables en Vbscript

VBscript ne connaît qu'un type de données : le variant. La valeur d'un variant peut être un
nombre (4, 10.2), une chaîne de caractères ("bonjour"), un booléen (true/false), une date
(#01/01/2002#), l'adresse d'un objet, un ensemble de toutes ces données placées dans une
structure appelée tableau.

Examinons le programme suivant et ses résultats :

Programme Résultats

http://tahe.developpez.com 16

4
i=4
10,2
r1=10,2
0,014
r2=0,014
c1=bonjour
01/10/02
d1=01/10/02
10/01/02
d2=10/01/02
-1
b1=Vrai
0
b2=Faux
v=4
v=10,2
v=bonjour
v=01/10/02
v=Vrai

Commentaires :

 un certain nombre de langages de programmation (C, C++, Pascal, Java, C#, ...) exigent
la déclaration préalable d'une variable avant son utilisation. Cette déclaration consiste à
indiquer le nom de la variable et le type de données elle peut contenir (entier, réel, chaîne,
date, booléen, ...). La déclaration des variables permet différentes choses :

o connaître la place mémoire nécessaire à la variable si différents types de données
nécessitent différents espaces mémoire

o de vérifier la cohérence du programme. Ainsi si i est un entier et c une chaîne de
caractères, multiplier i par c n'a aucun sens. Si le type des variables i et c a été
déclaré par le programmeur, le programme chargé d'analyser le programme avant
son exécution peut signaler une telle incohérence.

Comme la plupart des langages de script à type de données unique (Perl, Python,
Javascript, ...) Vbscript autorise de ne pas déclarer les variables. C'est ce qui a été fait dans
l'exemple ci-dessus.

 notons la syntaxe de différentes données
o 10.2 en ligne 10 (point décimal et non virgule). On notera qu'à l'affichage c'est

10,2 qui est affiché.
o 1.4e-2 en ligne 13 (notation scientifique). A l'affichage, c'est le nombre 0,014 qui a

http://tahe.developpez.com 17

été affiché
o [#01/10/2002#] (ligne 26) pour représenter la date du 10 janvier 2002. C'est

donc le format #mm/jj/aaaa# que vbscript utilise pour représenter la date jj du
mois mm de l'année aaaa

o les booléens true et false (vrai/faux) en lignes 31 et 34. Ces deux valeurs sont
représentées respectivement par les entiers -1 et 0 comme le montre l'affichage
des lignes 32 et 35. Lorsqu'un booléen est concaténé à une chaîne de caractères,
ces valeurs deviennent respectivement les chaînes "Vrai" et "Faux" comme le
montrent les lignes 33 et 36. On remarquera au passage que l'opérateur & de
concaténation peut servir à concaténer autre chose que des chaînes.

 une variable v n'ayant pas de type assigné, elle peut accueillir successivement dans le
temps des valeurs de différents types.

 3.5 Les sous-types du type variant

Voici que dit la documentation officielle sur les différents types de données que peut contenir un
variant :

Au-delà de la simple distinction nombre/chaîne, un Variant peut distinguer différents types
d'information numérique. Par exemple, certaines informations numériques représentent une
date ou une heure. Lorsque ces informations sont utilisées avec d'autres données de date ou
d'heure, le résultat est toujours exprimé sous la forme d'une date ou d'une heure. Vous
disposez aussi d'autres types d'information numérique, des valeurs booléennes jusqu'aux
grands nombres à virgule flottante. Ces différentes catégories d'information qui peuvent être
contenues dans un Variant sont des sous-types. Dans la plupart des cas, vous placez
simplement vos données dans un Variant et celui-ci se comporte de la façon la plus
appropriée en fonction de ces données.

Le tableau suivant présente différents sous-types susceptibles d'être contenus dans un
Variant.

Sous-type Description

Empty Le Variant n'est pas initialisé. Sa valeur est égale à zéro pour les variables
numériques et à une chaîne de longueur nulle ("") pour les variables chaîne.

Null Le Variant contient intentionnellement des données incorrectes.

Boolean Contient True (vrai) ou False (faux).

Byte Contient un entier de 0 à 255.

Integer Contient un entier de -32 768 à 32 767.

Currency -922 337 203 685 477,5808 à 922 337 203 685 477,5807.

Long Contient un entier de -2 147 483 648 à 2 147 483 647.

Single Contient un nombre à virgule flottante en précision simple de -3,402823E38 à
-1,401298E-45 pour les valeurs négatives ; de 1,401298E-45 à 3,402823E38 pour
les valeurs positives.

Double Contient un nombre à virgule flottante en précision double de
-1,79769313486232E308 à -4,94065645841247E-324 pour les valeurs négatives ;
de 4,94065645841247E-324 à 1,79769313486232E308 pour les valeurs positives.

Date (Time) Contient un nombre qui représente une date entre le 1er janvier 100 et le 31
décembre 9999.

http://tahe.developpez.com 18

../../../../st-2020/st-2020/cours/vbscript/vskeyfalse.htm
../../../../st-2020/st-2020/cours/vbscript/vskeytrue.htm

String Contient une chaîne de longueur variable limitée à environ 2 milliards de
caractères.

Object Contient un objet.

Error Contient un numéro d'erreur.

 3.6 Connaître le type exact de la donnée contenue dans un variant

Une variable de type variant peut contenir des données de divers types. Il nous faut quelquefois
connaître la nature exacte de ces données. Si dans un programme nous écrivons
produit=nombre1*nombre2, nous supposons que nombre1 et nombre2 sont deux données numériques.
Parfois nous n'en sommes pas sûrs car ces valeurs peuvent provenir d'une saisie au clavier, d'un
fichier, d'une source extérieure quelconque. Il nous faut alors vérifier la nature des données
placées dans nombre1 et nombre2. La fonction typename(var) nous permet de connaître le type de
données contenue dans la variable var. Voici des exemples :

Programme Résultats
var=1,type=Integer
var=deux,type=String
var=Vrai,type=Boolean
var=4,5,type=Double
var=11/10/01,type=Date

Une autre fonction possible est vartype(var) qui rend un nombre représentant le type de la donnée
contenue par la variable var :

Constante Valeur Description

vbEmpty 0 Empty (non initialisée)

vbNull 1 Null (aucune donnée valide)

vbInteger 2 Entier

vbLong 3 Entier long

vbSingle 4 Nombre en virgule flottante en simple précision

vbDouble 5 Nombre en virgule flottante en double précision

vbCurrency 6 Monétaire

vbDate 7 Date

vbString 8 Chaîne

vbObject 9 Objet Automation

vbError 10 Erreur

http://tahe.developpez.com 19

vbBoolean 11 Booléen

vbVariant 12 Variant (utilisé seulement avec des tableaux de
Variants)

vbDataObjec
t

13 Objet non Automation

vbByte 17 Octet

vbArray 8192 Tableau

Remarque Ces constantes sont spécifiées par VBScript. En conséquence, les noms peuvent
être utilisés n'importe où dans votre code à la place des valeurs réelles.

Les informations ci-dessus proviennent de la documentation de VBscript. Celle-ci est parfois
incorrecte, issue probablement de copier-coller faits à partir de la documentation de VB. La
fonction vartype de VBScript ne fait qu'une partie de ce qui est annoncé ci-dessus.

Le programme précédent, réécrit pour vartype donne les résultats suivants :

Programme Résultats
var=1,type=2
var=deux,type=8
var=Vrai,type=11
var=4,5,type=5
var=11/10/01,type=7

 3.7 Déclarer les variables utilisées par le script

Nous avons indiqué qu'il n'était pas obligatoire de déclarer les variables utilisées par le script.
Dans ce cas, si nous écrivons :

1) somme=4
...
2) somme=smme+10

avec une faute de frappe smme au lieu de somme dans l'instruction 2, vbscript ne signalera
aucune erreur. Il supposera que smme est une nouvelle variable. Il la créera et dans le
contexte de l'instruction 2 l'utilisera en l'initialisant à 0.

Ce genre d'erreurs peut être très difficile à retrouver. Aussi est-il conseillé de forcer la
déclaration des variables avec la directive option explicit placée en début de script. Ensuite
toute variable doit être déclarée avec une instruction dim avant sa première utilisation :

1. option explicit

http://tahe.developpez.com 20

2. ...
3. dim somme
4. 1) somme=4
5. ...
6. 2) somme=smme+10

Dans cet exemple, vbscript indiquera qu'il y a une variable non déclarée smme en 2)
comme le montre l'exemple qui suit :

Programme Résultats

dim1.vbs(9, 1) Erreur d'exécution Microsoft
VBScript: Variable non définie: 'smme'

Si dans les courts exemples du document, les variables ne sont la plupart du temps pas
déclarées, nous forcerons leur déclaration dès que nous écrirons les premiers scripts
significatifs. La directive Option explicit sera alors utilisée systématiquement.

 3.8 Les fonctions de conversion

Vbscript transforme les données des variants en chaînes, nombres, booléens, ... selon le contexte.
La plupart du temps, cela fonctionne bien mais parfois cela donne quelques surprises comme
nous le verrons ultérieurement. On peut alors vouloir "forcer" le type de donnée du variant.
VBscript possède des fonctions de conversion qui transforment une expression en divers types
de données. En voici quelques unes :

Cint (expression) transforme expression en entier court (integer)

Clng (expression) transforme expression en entier long (long)

Cdbl (expression) transforme expression en réel double (double)

Csng (expression) transforme expression en réel simple (single)

Ccur (expression) transforme expression en donnée monétaire (currency)

Voici quelques exemples :

Programme

http://tahe.developpez.com 21

Résultats

1. var=4,code type=8,nom type=String
2. var=4,code type=2,nom type=Integer
3. var=1000000,code type=8,nom type=String
4. var=1000000,code type=3,nom type=Long
5. var=3,4e-5,code type=8,nom type=String
6. var=0,000034,code type=5,nom type=Double
7. var=3,4e-5,code type=8,nom type=String
8. var=0,000034,code type=4,nom type=Single
9. var=1000,45,code type=8,nom type=String
10. var=1000,45,code type=6,nom type=Currency
11. var=14,code type=2,nom type=Integer
12. var=14,code type=8,nom type=String
13. var=1000,45,code type=5,nom type=Double
14. var=1000,code type=2,nom type=Integer
15. var=1000,75,code type=5,nom type=Double
16. var=1001,code type=2,nom type=Integer

 3.9 Lire des données tapées au clavier

L'objet wscript permet à un script de récupérer des données tapées au clavier. La méthode
wscript.stdin.readLine permet de lire une ligne de texte tapée au clavier et validée par la touche
"Entrée". Cette ligne lue peut être affectée à une variable.

Programme Résultats
1. Tapez votre nom : st
2. Bonjour st

http://tahe.developpez.com 22

Commentaires :

 Dans la colonne des résultats et dans la ligne [Tapez votre nom : st] , st est la ligne tapée
par l'utilisateur.

Si le texte tapé au clavier représente un nombre, il est quand même considéré avant tout comme
une chaîne de caractères comme le montre l'exemple ci-dessous :

Programme Résultats
1. Tapez un nombre : 14
2. nombre lu=14,type=String

Si ce nombre intervient dans une opération arithmétique, VBscript fera automatiquement la
conversion de la chaîne vers un nombre mais pas toujours. Regardons l'exemple qui suit :

Programme Résultats
1. nombre1 : 3
2. nombre2 : 4
3. 3+4=34
4. 3-4=-1
5. 3x4=12
6. 3/4=0,75

Dans les résultats, on voit que la ligne 8 du script ne s'est pas déroulée comme attendu, ceci parce
que (malheureusement) en vbscript l'opérateur + a deux significations : addition de deux
nombres ou concaténation de deux chaînes (les deux chaînes sont collées l'une à l'autre). Nous
avons vu précédemment que les nombres tapés au clavier étaient lus comme étant des chaînes de
caractères et que vbscript transformait celles-ci en nombres selon les besoins. Il l'a correctement
fait pour les opérations -,*,/ qui ne peuvent faire intervenir que des nombres mais pas pour
l'opérateur + qui lui peut également faire intervenir des chaînes. Il a supposé ici qu'on voulait
faire une concaténation de chaînes.

Une solution simple à ce problème est de transformer en nombres les chaînes dès leur lecture
comme le montre l'amélioration qui suit du programme précédent :

Programme Résultats

http://tahe.developpez.com 23

1. nombre1 : 3
2. nombre1=3,type=String
3. nombre1=3,type=Long
4. nombre2 : 4
5. nombre2=4,type=String
6. nombre2=4,type=Long
7. 3+4=7
8. 3-4=-1
9. 3x4=12
10. 3/4=0,75

 3.10 Saisir des données avec la fonction inputbox

On peut vouloir saisir des données dans une interface graphique plutôt qu'au clavier. On utilise
alors la fonction inputBox. Celle-ci admet de nombreux paramètres dont seuls les deux premiers
sont fréquemment utilisés :

reponse=inputBox(message,titre)

 message : la question que vous posez à l'utilisateur
 titre (facultatif) : le titre que vous donnez à la fenêtre de saisie
 reponse : le texte tapé par l'utilisateur. Si celui-ci a fermé la fenêtre sans répondre,

reponse est la chaîne vide.

Voici un exemple où on demande le nom et l'âge d'une personne. Pour le nom on donne une
information et on fait OK. Pour l'âge, on donne également une information mais on fait Annuler.

Programme

Résultats

http://tahe.developpez.com 24

 3.11 Utiliser des objets structurés

Il est possible de créer avec vbscript des objets ayant des méthodes et des propriétés. Pour ne pas
compliquer les choses, nous allons présenter ici un objet avec des propriétés et pas de méthodes.
Considérons une personne. Elle a de nombreuses propriétés qui la caractérisent : taille, poids,
couleur de peau, des yeux, des cheveux, ... Nous n'en retiendrons que deux : son nom et son âge.
Avant de pouvoir utiliser des objets, il faut créer le moule qui va permettre de les fabriquer. Cela
se fait en vbscript avec une classe. La classe personne pourrait être définie comme suit :

1. class personne
2. Dim nom,age
3. End class

C'est l'instruction [Dim nom,age] qui définit les deux propriétés de la classe personne. Pour créer des
exemplaires (on parle d'instances) de la classe personne, on écrit :

1. set personne1=new personne
2. set personne2=new personne

Pourquoi ne pas écrire

1. personne1=new personne
2. personne2=new personne

Parce qu'un variant ne peut contenir un objet. Il peut seulement en contenir l'adresse. En écrivant
set personne1=new personne, la séquence d'événements suivante prend place :

1. un objet personne est créé. Cela veut dire que de la mémoire lui est allouée.
2. l'adresse de cet objet personne est affectée à la variable personne1

Nous avons alors le schéma mémoire suivant pour les variables personne1 et personne2 :

Par abus de langage, on pourra dire que personne1 est un objet personne. On peut accepter cet abus
de langage si on se rappelle que personne1 est en fait l'adresse d'un objet personne et non l'objet
personne lui-même.

Nous avons dit qu'un objet personne avait deux propriétés nom et age. Comment exploiter ces
propriétés ? Par la notation objet.propriété comme il a été expliqué un peu plus haut. Ainsi

http://tahe.developpez.com 25

personne1.nom désigne le nom de la personne 1 et personne1.age son âge. Voici un court programme
d'illustration :

Programme Résultats
p1=(dupont,18)

Le programme précédent pourrait être modifié comme suit :

Programme Résultats

nom=dupont
age=18

Nous avons utilisé ici la structure with ... end with qui permet de "factoriser" des noms d'objets
dans des expressions. La structure with p1 ... end with des lignes 9-12 et 15-18 permet d'utiliser
ensuite la syntaxe .nom en lieu et place de p1.nom et .age en lieu et place de p1.age. Cela permet
d'alléger l'écriture des instructions où le même nom d'objet est utilisée de façon répétée.

 3.12 Affecter une valeur à une variable

Il y a deux instructions pour affecter une valeur à une variable :

1. variable=expression
2. set variable=expression

La forme 2 est réservée aux expressions dont le résultat est une référence d'objet. Pour tous les
autres types d'expressions c'est la forme 1 qui convient. La différence entre les deux formes est la
suivante :

1. dans l'instruction variable=expression, variable reçoit une valeur. Si v1 et v2 sont deux
variables, écrire v1=v2 affecte la valeur de v1 à v2. On a donc la duplication d'une valeur
à deux endroits différents. Si par la suite, la valeur de v2 est modifiée, celle de v1 ne l'est
en rien.

http://tahe.developpez.com 26

2. dans l'instruction set variable=expression, variable reçoit comme valeur l'adresse d'un objet.
Si v1 et v2 sont deux variables et si v2 est l'adresse d'un objet obj2, écrire set v1=v2
affecte la valeur de v1 à v2, donc l'adresse de l'objet obj2. Lorsque le script manipule
ensuite v1 et v2, ce ne sont pas les "valeurs" de v1 et v2 qui sont manipulées mais bien les
objets "pointés" par v1 et v2, donc le même objet ici. On dit que v1 et v2 sont deux
références au même objet et manipuler ce dernier via v1 ou v2 ne fait aucune différence.
Dit autrement, modifier l'objet référencé par v2 modifie celui référencé par v1.

Voici un exemple :

Programme Résultats
1. i=4
2. j=4
3. i=4
4. j=5
5. p1.nom=dupont
6. p1.age=18
7. p1.nom=dupont
8. p1.age=19
9. p2.nom=dupont
10. p2.age=19

 3.13 Évaluer des expressions

Les principaux opérateurs permettant d'évaluer des expressions sont les suivantes :

Type
d'opérateurs

Opérateur
s

Exemple

Arithmétique +,-,*,/

http://tahe.developpez.com 27

mod a mod b donne le reste de la division entière de a par b. Auparavant
a et b ont été transformés en entiers si besoin était.

\ a \ b donne le quotient de la division entière de a par b. Auparavant
a et b ont été transformés en entiers si besoin était.

^ a^b élève a à la puissance b. Ainsi a^2 est égal à a2

Comparaison

<,<=
>, >=
=,<>

a<>b est vrai si a est différent de b
a=b est vrai si a est égal à b

a et b peuvent être tous deux des nombres ou tous deux des
chaînes de caractères. Dans ce dernier cas, chaine1<chaine2 si dans
l'ordre alphabétique chaine1 précède chaine2. Dans la comparaison
de chaînes, les majuscules précèdent les minuscules dans l'ordre
alphabétique.

is obj1 is obj2 est vrai si obj1 et obj2 sont des références sur le même
objet.

Logique

and, or, not,
xor

Les opérandes sont tous ici booléens.
bool1 or bool2 est vrai si bool1 ou bool2 est vrai
bool1 and bool2 est vrai si bool1 et bool2 sont vrais
not bool1 est vrai si bool1 est faux et vice-versa
bool1 xor bool2 est vrai si seulement un seul des booléens bool1,
bool2 est vrai

Concaténation
&, + Il est déconseillé d'utiliser l'opérateur + pour concaténer deux

chaînes à cause de la confusion possible avec l'addition de deux
nombres. On utilisera donc exclusivement l'opérateur &.

 3.14 Contrôler l'exécution du programme

 3.14.1 Exécuter des actions de façon conditionnelle

L'instruction vbscript permettant de faire des actions selon la valeur vraie/fausse d'une condition
est la suivante :

if expression then
action-vrai-1
action-vrai-2
..

else
action-faux-1
action-faux-2
...

end if

L'expression expression est tout d'abord évaluée. Cette expression doit
avoir une valeur booléenne. Si elle a la valeur vrai, les actions du then sont
exécutées sinon ce sont celles du else s'il est présent.

Suit un programme présentant différentes variantes du if-then-else :

Programme Résultats

http://tahe.developpez.com 28

1. 3 est plus grand que 0
2. 3 est plus grand que 2
3. i=4
4. 4 est plus petit que 10
5. i=3

Commentaires :
 en vbscript, on peut écrire instruction1:instruction2:... : instructionn au lieu d'écrire une

instruction par ligne. C'est cette possibilité qui a été exploitée en ligne 10 par exemple.

 3.14.2 Exécuter des actions de façon répétée

Boucle à nombre d'itérations
connu

for i=idébut to ifin step ipas
actions

next

1. la variable i est ici appelée variable de boucle. Elle
peut porter un nom quelconque

2. i prend la valeur idébut
3. la valeur de i est comparée à ifin. Si i<=ifin, les

actions situées entre le for... next sont exécutées
4. i est incrémenté de la quantité ipas (i=i+ipas)
5. on reboucle à l'étape 3 précédente. Au bout d'un

nombre fini d'étapes, la valeur de i dépassera ifin.
L'exécution du script se poursuit avec l'instruction
qui suit le next

6. si l'incrément ipas est négatif, la condition de
l'étape 3 est changée. On exécute les actions du
for...next que si i>=ifin.

On peut sortir d'une boucle for à tout moment avec
l'instruction exit for.

Boucle à nombre d'itérations
inconnu

do while condition
actions

loop

1. l'expression condition est évaluée. Si elle est vraie,
les actions du while...loop sont exécutées

2. les actions exécutées ont pu modifier la valeur de
condition. On reboucle sur l'étape 1 précédente.

3. lorsque l'expression condition devient fausse, la
boucle est terminée

On peut sortir d'une boucle do while à tout moment avec
l'instruction exit do.

Le programme ci-dessous illustre ces points :

Programme

http://tahe.developpez.com 29

Résultats
i=0,tableau(i)=10,somme=10
i=1,tableau(i)=20,somme=30
i=2,tableau(i)=30,somme=60
i=3,tableau(i)=40,somme=100
i=0,tableau(i)=10,somme=10
i=1,tableau(i)=20,somme=30
i=2,tableau(i)=30,somme=60
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9
i=10
i=11
i=1
i=2
i=3
i=4
i=5
i=6

Note : Dans la phase de développement d'un programme, il n'est pas rare qu'un programme
"boucle", c.a.d. qu'il ne s'arrête jamais. En général, le programme exécute une boucle dont la
condition de sortie ne peut être vérifiée comme par exemple dans l'exemple qui suit :

' boucle infinie
i=0
Do While 1=1
 i=i+1
 wscript.echo i
Loop

' une autre du même genre
i=0
Do While true
 i=i+1
 wscript.echo i
Loop

http://tahe.developpez.com 30

Si on exécute le programme précédent, la première boucle ne s'arrêtera jamais d'elle-même. On
peut forcer son arrêt en tapant CTRL-C au clavier (touche CTRL et touche C enfoncées en
même temps).

 3.14.3 Terminer l'exécution du programme

L'instruction wscript.quit n termine l'exécution du programme en renvoyant un code d'erreur
égal à n. Sous DOS, ce code d'erreur peut être testé avec l'instruction if ERRORLEVEL n qui est
vrai si le code d'erreur renvoyé par le dernier programme exécuté est >=n. Considérons le
programme suivant et ses résultats :

début

Juste après l'exécution du programme, on émet les trois commandes DOS suivantes :

1. C:\>if ERRORLEVEL 5 echo 5
2.
3. C:\>if ERRORLEVEL 4 echo 4
4. 4
5.
6. C: >if ERRORLEVEL 3 echo 3
7. 3

La commande DOS 1 teste si le code d'erreur retourné par le programme est >=5. Si oui, elle
affiche (echo) 5 sinon rien.
La commande DOS 2 teste si le code d'erreur retourné par le programme est >=4. Si oui, elle
affiche 4 sinon rien.
La commande DOS 3 teste si le code d'erreur retourné par le programme est >=3. Si oui, elle
affiche 3 sinon rien.

Des résultats affichés, on peut déduire que le code d'erreur retourné par le programme était 4.

 3.15 Les tableaux de données dans un variant

Un variant T peut contenir une liste de valeurs. On dit alors que c'est un tableau. Un tableau T
possède diverses propriétés :

 on a accès à l'élément i du tableau T par la syntaxe T(i) où i est un entier appelé indice
entre 0 et n-1 si T a n éléments.

 on peut connaître l'indice du dernier élément du tableau T avec l'expression ubound(T).
Le nombre d'éléments du tableau T est alors ubound(T)+1. On appelle souvent ce
nombre la taille du tableau.

 un variant T peut être initialisé avec un tableau vide par la syntaxe T=array() ou avec une
suite d'éléments par la syntaxe T=array(élément0, élément1,, élémentn)

 on peut ajouter des éléments à un tableau T déjà créé. Pour cela, on utilise l'instruction
redim preserve T(N) où N est le nouvel indice du dernier élément du tableau T.
L'opération est appelée un redimensionnement (redim). Le mot clé preserve indique que
lors de ce redimensionnement, le contenu actuel du tableau doit être préservé. En
l'absence de ce mot clé, T est redimensionné et vidé de ses éléments.

 un élément T(i) du tableau T est de type variant et peut donc contenir n'importe quelle
valeur et en particulier un tableau. Dans ce cas, la notation T(i)(j) désigne l'élément j du
tableau T(i).

Ces diverses propriétés des tableaux sont illustrées par le programme qui suit :
http://tahe.developpez.com 31

Programme Résultats
Le tableau t1 a 5 éléments
t1(0)=1
t1(1)=-4,5
t1(2)=deux
t1(3)=Vrai
t1(4)=10/01/02
t1=1:-4,5:deux:Vrai:10/01/02
t1(5)=10:20:30
t1(5)(1)=20
t1=1 ~ -4,5 ~ deux
t1=:::

Commentaires

 on a utilisé ici une fonction appelée join explicitée un peu plus loin.

 3.16 Les variables tableaux

Il existe en vbscript une autre façon d'utiliser un tableau, c'est d'utiliser une variable tableau. Une
telle variable doit alors être obligatoirement déclarée contrairement aux variables scalaires par une
instruction dim. Diverses déclarations sont possibles :

 dim tableau(n) déclare un tableau statique de n+1 éléments numérotés de 0 à n. Ce type
de tableau ne peut pas être redimensionné

 dim tableau() déclare un tableau dynamique vide. Il devra être redimensionné pour être
utilisé par l'instruction redim de la même manière que pour un variant contenant un
tableau

 dim tableau(n,m) déclare un tableau à 2 dimensions de (n+1)*(m+1) éléments.
L'élément (i,j) du tableau est noté tableau(i,j). On notera la différence avec un variant où le
même élément aurait été noté tableau(i)(j).

Pourquoi deux types de tableaux qui finalement sont très proches ? La documentation de vbscript
n'en parle pas et n'indique pas non plus si l'un est plus performant que l'autre. Par la suite, nous
utiliserons quasi exclusivement le tableau dans un variant dans nos exemples. On se rappellera
cependant que VBscript dérive du langage Visual Basic qui contient lui des données typées
(integer, double, boolean, ...). Dans ce cas, si on doit utiliser un tableau de nombres réels par
exemple, la variable tableau sera plus performante que la variable variant. On déclarera alors
quelque chose comme dim tableau(1000) as double pour déclarer un tableau de nombres réels ou
simplement dim tableau() as double si le tableau est dynamique.

Voici un exemple illustrant l'utilisation de variables tableau :

Programme Résultats

http://tahe.developpez.com 32

Le tableau t1 a 5 éléments
t1(0)=1
t1(1)=-4,5
t1(2)=deux
t1(3)=Vrai
t1(4)=10/01/02
t1=1:-
4,5:deux:Vrai:10/01/02
Le tableau t1 a 5 éléments
t2(0)=0
t2(1)(2)=30
t2=:::
t3(0,0)=0
t3(0,1)=1
t3(1,0)=10
t3(1,1)=11

 3.17 Les fonctions split et join

Les fonctions split et join permettent de passer d'une chaîne de caractères à un tableau et vice-
versa :

 Si T est un tableau et car une chaîne de caractères, join(T,car) est une chaîne de
caractères formée par la réunion de tous les éléments du tableau T, chacun étant séparé
du suivant par la chaîne car. Ainsi join(array(1,2,3),"abcd") donnera la chaîne
"1abcd2abcd3"

 Si C est une chaîne de caractères formée d'une suite de champs séparés par la chaîne car
la fonction split(C,car) est un tableau dont les éléments sont les différents de la chaîne C.
Ainsi split("1abcd2abcd3","abcd") donnera le tableau (1,2,3)

Voici un exemple :

Programme Résultats
' transformation tableau-->chaîne et vice-versa

' tableau --> chaine
tableau=array("un",2,"trois")
chaine=join(tableau,",")
wscript.echo chaine

' chaine --> tableau
tableau2=split(chaine,",")
For i=0 To ubound(tableau2)
 wscript.echo tableau2(i)
Next

un,2,trois
un
2
trois

http://tahe.developpez.com 33

 3.18 Les dictionnaires

On a accès à l'élément d'un tableau T lorsqu'on connaît son numéro i. Il est alors accessible par la
notation T(i). Il existe des tableaux dont on accèe aux éléments, non pas par un numéro mais par
une chaîne de caractères. L'exemple typique de ce type de tableau est le dictionnaire. Lorsqu'on
cherche la signification d'un mot dans le "Larousse" ou "Le petit Robert", on accède à celle-ci par
le mot. On pourrait représenter ce dictionnaire par un tableau à 2 colonnes :

mot1 description1
mot2 description2
mot3 description3
....

On pourrait alors écrire des choses comme :
dictionnaire("mot1")="description1"
dictionnaire("mot2")="description2"
...

On est alors proche du fonctionnement d'un tableau si ce n'est que les indices du tableau ne sont
pas des nombres entiers mais des chaînes de caractères. On appelle ce type de tableau un
dictionnaire (ou tableau associatif, hashtable) et les indices chaînes de caractères les clés du
dictionnaire (keys). L'usage des dictionnaires est extrêmement fréquent dans le monde
informatique. Nous avons tous une carte de sécurité sociale avec dessus un numéro. Ce numéro
nous identifie de façon unique et donne accès aux informations qui nous concernent. Dans le
modèle dictionnaire("clé")="informations", "clé" serait ici le n° de sécurité sociale et
"informations" toutes les informations stockées à notre sujet sur les ordinateurs de la sécurité
sociale.

Sous Windows, on dispose d'un objet Active X appelé "Scripting.Dictionary" qui permet de
créer et gérer des dictionnaires. Un objet Active X est un composant logiciel qui expose une
interface utilisable par des programmes qui peuvent être écrits en différents langages, tant qu'ils
respectent la norme d'utilisation des objets Active X. L'objet Scripting.dictionary est donc
utilisable par les langages de programmation de Windows : javascript, per, python, C, C++, vb,
vba,... et pas seulement par vbscript.

1 Un objet Scripting.Dictionary est créé par une instruction
set dico=wscript.CreateObject("Scripting.Dictionary")

ou simplement
set dico=CreateObject("Scripting.Dictionary")

CreateObject est une méthode de l'objet WScript permettant de créer des instances d'objets
Active X. La version 2 montre que wscript peut être un objet implicite. Lorsqu'une méthode
ne peut être "rapprochée" d'un objet, le conteneur WSH essaiera de le rapprocher de l'objet
wscript.

2 Une fois le dictionnaire créé, on va pouvoir lui ajouter des éléments avec la méthode add :
dico.add "clé",valeur

va créer une nouvelle entrée dans le dictionnaire associée à la clé "clé". La valeur associée est
un variant dont une donnée quelconque.

3 Pour récupérer la valeur associée à une clé donnée on utilise la méthode item du
dictionnaire :

var=dico.item("clé")
ou set var=dico.item("clé) si la valeur associée à la clé est un objet.

http://tahe.developpez.com 34

4 L'ensemble des clés du dictionnaire peut être récupéré dans un tableau variant grâce à la
méthode keys :

clés=dico.keys
clés est un tableau dont on peut parcourir les éléments.

5 L'ensemble des valeurs du dictionnaire peut être récupéré dans un tableau variant grâce à la
méthode items :

valeurs=dico.items
items est un tableau dont on peut parcourir les éléments.

6 L'existence d'une clé peut être testée avec la méthode exists :
dico.exists("clé") est vrai si la clé "clé" existe dans le dictionnaire

7 On peut enlever une entrée du dictionnaire (clé+valeur) avec la méthode remove :
dico.remove("clé") enlève l'entrée du dictionnaire associée à la clé "clé".
dico.removeall enlève toutes les clés, c.a.d. vide le dictionnaire.

Le programme suivant utilise ces diverses possibilités :

Programme
' création et utilisation d'un dictionnaire
Set dico=CreateObject("Scripting.Dictionary")

' remplisage dico
dico.add "clé1","valeur1"
dico.add "clé2","valeur2"
dico.add "clé3","valeur3"

' nombre d'éléments
wscript.echo "Le dictionnaire a " & dico.count & " éléments"

' liste des clés
wscript.echo "liste des clés"
cles=dico.keys
For i=0 To ubound(cles)
 wscript.echo cles(i)
Next

' liste des valeurs
wscript.echo "liste des valeurs"
valeurs=dico.items
For i=0 To ubound(valeurs)
 wscript.echo valeurs(i)
Next

' liste des clés et valeurs
wscript.echo "liste des clés et valeurs"
cles=dico.keys
For i=0 To ubound(cles)
 wscript.echo "dico(" & cles(i) & ")=" & dico.item(cles(i))
Next

' recherche d'éléments
' clé1
If dico.exists("clé1") Then
 wscript.echo "La clé clé1 existe dans le dictionnaire et la valeur associée est " &
dico.item("clé1")
 Else
 wscript.echo "La clé clé1 n'existe pas dans le dictionnaire"
 End If
' clé4
If dico.exists("clé4") Then
 wscript.echo "La clé clé4 existe dans le dictionnaire et la valeur associée est " &
dico.item("clé4")
 Else
 wscript.echo "La clé clé4 n'existe pas dans le dictionnaire"
 End If

' on enlève la clé 1
dico.remove("clé1")

http://tahe.developpez.com 35

' liste des clés et valeurs
wscript.echo "liste des clés et valeurs après suppression de clé1"
cles=dico.keys
For i=0 To ubound(cles)
 wscript.echo "dico(" & cles(i) & ")=" & dico.item(cles(i))
Next

' on supprime tout
dico.removeall

' liste des clés et valeurs
wscript.echo "liste des clés et valeurs après suppression de tous les éléments"
cles=dico.keys
For i=0 To ubound(cles)
 wscript.echo "dico(" & cles(i) & ")=" & dico.item(cles(i))
Next

' fin
wscript.quit 0

Résultats
Le dictionnaire a 3 éléments
liste des clés
clé1
clé2
clé3
liste des valeurs
valeur1
valeur2
valeur3
liste des clés et valeurs
dico(clé1)=valeur1
dico(clé2)=valeur2
dico(clé3)=valeur3
La clé clé1 existe dans le dictionnaire et la valeur associée est valeur1
La clé clé4 n'existe pas dans le dictionnaire
liste des clés et valeurs après suppression de clé1
dico(clé2)=valeur2
dico(clé3)=valeur3
liste des clés et valeurs après suppression de tous les éléments

 3.19 Trier un tableau ou un dictionnaire

Il est courant de vouloir trier un tableau ou un dictionnaire dans l'ordre croissant ou décroissant
de ses valeurs ou de ses clés pour un dictionnaire. Alors que dans la pupart des langages, existent
des fonctions de tri, il ne semble pas en exister en vbscript. C'est une lacune.

 3.20 Les arguments d'un programme

Il est possible d'appeler un programme vbscript en lui passant des paramètres comme dans :

cscript prog1.vbs arg1 arg2 argn

Cela permet à l'utilisateur de passer des informations au programme. Comment celui-ci fait-il
pour les récupérer ? Regardons le programme suivant :

Programme Résultats
C:\>cscript arg1.vbs a b c

Il y a 3 arguments
a
b
c

http://tahe.developpez.com 36

Commentaires
 WScript.Arguments est la collection des arguments passés au script
 une collection C est un objet qui a

o une propriété count qui est le nombre d'éléments dans la collection
o une méthode C(i) qui donne l'élément i de la collection

 3.21 Une première application : IMPOTS

On se propose d'écrire un programme permettant de calculer l'impôt d'un contribuable. On se
place dans le cas simplifié d'un contribuable n'ayant que son seul salaire à déclarer :

 on calcule le nombre de parts du salarié nbParts=nbEnfants/2 +1 s'il n'est pas
marié, nbEnfants/2+2 s'il est marié, où nbEnfants est son nombre d'enfants.
 on calcule son revenu imposable R=0.72*S où S est son salaire annuel
 on calcule son coefficient familial Q=R/N
on calcule son impôt I d'après les données suivantes

12620.0 0 0
13190 0.05 631
15640 0.1 1290.5
24740 0.15 2072.5
31810 0.2 3309.5
39970 0.25 4900
48360 0.3 6898.5
55790 0.35 9316.5
92970 0.4 12106
127860 0.45 16754.5
151250 0.50 23147.5
172040 0.55 30710
195000 0.60 39312
0 0.65 49062

Chaque ligne a 3 champs. Pour calculer l'impôt I, on recherche la première ligne où QF<=champ1. Par exemple,
si QF=30000 on trouvera la ligne

24740 0.15 2072.5

L'impôt I est alors égal à 0.15*R - 2072.5*nbParts. Si QF est tel que la relation QF<=champ1 n'est jamais
vérifiée, alors ce sont les coefficcients de la dernière ligne qui sont utilisés. Ici :

0 0.65 49062

ce qui donne l'impôt I=0.65*R - 49062*nbParts.

Le programme est le suivant :

Programme

1. ' calcul de l'impôt d'un contribuable
2. ' le programme doit être appelé avec trois paramètres : marié enfants salaire
3. ' marié : caractère O si marié, N si non marié
4. ' enfants : nombre d'enfants
5. ' salaire : salaire annuel sans les centimes
6.
7. ' aucune vérification de la validité des données n'est faite mais on
8. ' vérifie qu'il y en a bien trois
9.
10. ' déclaration obligatoire des variables
11. Option Explicit
12.
13. ' on vérifie qu'il y a 3 arguments
14. Dim nbArguments
15. nbArguments=wscript.arguments.count
16. If nbArguments<>3 Then
17. wscript.echo "Syntaxe : pg marié enfants salaire"
18. wscript.echo "marié : caractère O si marié, N si non marié"
19. wscript.echo "enfants : nombre d'enfants"
20. wscript.echo "salaire : salaire annuel sans les centimes"

http://tahe.developpez.com 37

21. ' arrêt avec code d'erreur 1
22. wscript.quit 1
23. End If
24.
25. ' on récupère les arguments sans vérifier leur validité
26. Dim marie, enfants, salaire
27. If wscript.arguments(0) = "O" Or wscript.arguments(0)="o" Then
28. marie=true
29. Else
30. marie=false
31. End If
32. ' enfants est un nombre entier
33. enfants=cint(wscript.arguments(1))
34. ' salaire est un entier long
35. salaire=clng(wscript.arguments(2))
36.
37. ' on définit les données nécessaire au calcul de l'impôt dans 3 tableaux
38. Dim limites, coeffn, coeffr
39. limites=array(12620,13190,15640,24740,31810,39970,48360, _
40. 55790,92970,127860,151250,172040,195000,0)
41. coeffr=array(0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45, _
42. 0.5,0.55,0.6,0.65)
43. coeffn=array(0,631,1290.5,2072.5,3309.5,4900,6898.5,9316.5, _
44. 12106,16754.5,23147.5,30710,39312,49062)
45.
46. ' on calcule le nombre de parts
47. Dim nbParts
48. If marie=true Then
49. nbParts=(enfants/2)+2
50. Else
51. nbParts=(enfants/2)+1
52. End If
53. If enfants>=3 Then nbParts=nbParts+0.5
54.
55. ' on calcule le quotient familial et le revenu imposable
56. Dim revenu, qf
57. revenu=0.72*salaire
58. qf=revenu/nbParts
59.
60. ' on calcule l'impôt
61. Dim i, impot
62. i=0
63. Do While i<ubound(limites) And qf>limites(i)
64. i=i+1
65. Loop
66. impot=int(revenu*coeffr(i)-nbParts*coeffn(i))
67.
68. ' on affiche le résultat
69. wscript.echo "impôt=" & impot
70.
71. ' on quitte sans erreur
72. wscript.quit 0

Résultats
1. C:\>cscript impots1.vbs o 2 200000
2.
3. impôt=22504
4.
5. C:\>cscript impots1.vbs o 2 20000
6.
7. impôt=0
8.
9. C:\>cscript impots1.vbs o 2 2000000
10.
11. impôt=746064
12.
13. C:\>cscript impots1.vbs n 2 200000
14.
15. impôt=33388
16.
17. C:\>cscript impots1.vbs n 3 200000
18.
19. impôt=22504
20.
21. C:\>cscript impots1.vbs
22.
23. Syntaxe : pg marié enfants salaire
24. marié : caractère O si marié, N si non marié
25. enfants : nombre d'enfants
26. salaire : salaire annuel sans les centimes

Commentaires :

 le programme utilise ce qui a été exposé précédemment (déclaration des variables,
http://tahe.developpez.com 38

arguments, changements de types, tests, boucles, tableau dans un variant)
 il ne vérifie pas la validité des données, ce qui serait anormal dans un programme réel
 seule la boucle while présente une difficulté. Elle cherche à déterminer l'indice i du

tableau limites pour lequel on a limites(i)>qf et cela pour i<ubound(limites) (c.a.d. ici
i<13) car le dernier élément du tableau limites n'est pas significatif. Il a été ajouté
uniquement pour que le test [Do While i<ubound(limites) And qf>limites(i)] puisse se
faire pour i=13. Le test est alors 13<13 and qf>limites(13) et il faut alors (en vbscript) que
limites(13) existe. Lorsqu'on sort de la boucle while, la dernière valeur de i calculée
permet de calculer l'impôt : [impot=int(revenu*coeffr(i)-nbParts*coeffn(i))].

http://tahe.developpez.com 39

 4 La gestion des erreurs

En programmation, il y a une règle absolue : un programme ne doit jamais "planter"
sauvagement. Toutes les erreurs qui peuvent se produire lors de l'exécution du programme
doivent être gérées et des messages d'erreurs significatifs générés.

Si nous reprenons l'exemple des impôts traité précédemment, que se passe-t-il si l'utilisateur entre
n'importe quoi pour le nombre d'enfants. Regardons sur cet exemple :

1. C:\>cscript impots1.vbs o xyzt 200000
2.
3. C:\impots1.vbs(33, 3) Erreur d'exécution Microsoft VBScript: Type incompatible: 'cint'

C'est ce qu'on appelle un plantage sauvage. Il y a eu "plantage" sur l'instruction
enfants=cint(wscript.arguments(1)) car arguments(1) contenait la chaîne "xyzt".

Avant d'utiliser un variant dont on ne connaît pas la nature exacte, il faut vérifier son sous-type
exact. On peut faire ceci de différentes façons :

 tester le type réel de la donnée contenue dans un variant avec les fonctions vartype ou
typename

 utiliser une expression régulière pour vérifier que le contenu du variant correspond à un
certain modèle

 laisser l'erreur se produire puis l'intercepter pour ensuite la gérer

Nous examinons ces différentes méthodes.

 4.1 Connaître le type exact d'une donnée

Rappelons que les fonctions vartype ou varname permettent de connaître le type exact d'une
donnée. Cela ne nous est pas toujours d'un grand secours. Par exemple, lorsque nous lisons une
donnée tapée au clavier, les fonctions vartype et typename vont nous dire que c'est une chaîne de
caractères car c'est ainsi qu'est considérée toute donnée tapée au clavier. Cela ne nous dit pas si
cette chaîne peut par exemple être considérée comme un nombre valide. On utilise alors d'autres
fonctions pour avoir accès à ce type d'informations :

isNumeric(expression) rend vrai si expression peut être utilisée comme un nombre

isDate(expression) rend vrai si expression peut être utilisée comme une date

isEmpty(var) rend vrai si la variable var n'a pas été initialisée

isNull(var) rend vrai si la variable var contient des données invalides

isArray(var) rend vrai si var est un tableau

isObject(var) rend vrai si var est un objet

L'exemple suivant demande de taper une donnée au clavier jusqu'à ce que celle-ci soit reconnue
comme un nombre :

Programme
1. ' lecture d'une donnée jusqu'à ce que celle-ci soit reconnue comme un nombre
2.
3. Option Explicit
4.
5. Dim fini, nombre
6.
7. ' on boucle tant que la donnée saisie n'est pas correcte
8. ' la boucle est contrôlée par un booléen fini, mis à faux au départ (= ce n'est pas fini)

http://tahe.developpez.com 40

9.
10. fini=false
11. Do While Not fini
12. ' on demande le nombre
13. wscript.stdout.write "Tapez un nombre : "
14. ' on le lit
15. nombre=wscript.stdin.readLine
16. ' le type est forcément string lors d'une lecture
17. wscript.echo "Type de la donnée lue : " & typename(nombre) & "," & vartype(nombre)
18. ' on teste le type réel de la donnée lue
19. If isNumeric(nombre) Then
20. fini=true
21. Else
22. wscript.echo "Erreur, vous n'avez pas tapé un nombre. Recommencez svp..."
23. End If
24. Loop
25.
26. ' confirmation
27. wscript.echo "Merci pour le nombre " & nombre
28.
29. ' et fin
30. wscript.quit 0

Résultats
1. Tapez un nombre : a
2. Type de la donnée lue : String,8
3. Erreur, vous n'avez pas tapé un nombre. Recommencez svp...
4. Tapez un nombre : -12
5. Type de la donnée lue : String,8
6. Merci pour le nombre -12

La fonction isNumeric ne nous dit pas si une expression est un entier ou pas. Pour avoir cette
information, il faut faire des tests supplémentaires. L'exemple suivant demande un nombre entier
>0 :

Programme
1. ' lecture d'une donnée jusqu'à ce que celle-ci soit reconnue comme un nombre entier >0
2.
3. Option Explicit
4.
5. Dim fini, nombre
6.
7. ' on boucle tant que la donnée saisie n'est pas correcte
8. ' la boucle est contrôlée par un booléen fini, mis à faux au départ (= ce n'est pas fini)
9.
10. fini=false
11. Do While Not fini
12. ' on demande le nombre
13. wscript.stdout.write "Tapez un nombre entier >0: "
14. ' on le lit
15. nombre=wscript.stdin.readLine
16. ' on teste le type réel de la donnée lue
17. If isNumeric(nombre) Then
18. ' est-ce un entier (nombre égal à sa partie entière) positif ?
19. If (nombre-int(nombre))=0 And nombre>0 Then
20. fini=true
21. End If
22. End If
23. ' msg d'erreur éventuel
24. If Not fini Then wscript.echo "Erreur, vous n'avez pas tapé un nombre entier >0.

Recommencez svp..."
25. Loop
26.
27. ' confirmation
28. wscript.echo "Merci pour le nombre entier >0 : " & nombre
29.
30. ' et fin
31. wscript.quit 0

Résultats
1. Tapez un nombre entier >0: a
2. Erreur, vous n'avez pas tapé un nombre entier >0. Recommencez svp...
3. Tapez un nombre entier >0: -1
4. Erreur, vous n'avez pas tapé un nombre entier >0. Recommencez svp...
5. Tapez un nombre entier >0: 10.6
6. Erreur, vous n'avez pas tapé un nombre entier >0. Recommencez svp...
7. Tapez un nombre entier >0: 12
8. Merci pour le nombre entier >0 : 12

http://tahe.developpez.com 41

Commentaires :

 int(nombre) donne la partie entière d'un nombre. Un nombre égal à sa partie entière est un
entier.

 On notera, de façon intéressante, qu'il a fallu employer le test If (nombre-int(nombre))=0
And nombre>0 parce que le test If nombre=int(nombre) And nombre>0 ne donnait pas les
résultats escomptés. Il ne détectait pas les nombres entiers positifs. Nous laissons au
lecteur le soin de découvrir pourquoi.

 Le test If (nombre-int(nombre))=0 n'est pas totalement fiable. Regardons l'exemple
d'exécution suivant :

Tapez un nombre entier >0: 4,0000000000000000000000001

Merci pour le nombre entier >0 : 4,0000000000000000000000001

Les nombres réels ne sont pas représentés de façon exacte mais de façon approchée. Et
ici, l'opération nombre-int(nombre) a donné 0 à la précision près de l'ordinateur.

 4.2 Les expressions régulières

Les expressions régulières nous permettent de tester le format d'une chaîne de caractères. Ainsi
on peut vérifier qu'une chaîne représentant une date est au format jj/mm/aa. On utilise pour cela
un modèle et on compare la chaîne à ce modèle. Ainsi dans cet exemple, j m et a doivent être des
chiffres. Le modèle d'un format de date valide est alors "\d\d/\d\d/\d\d" où le symbole \d
désigne un chiffre. Les symboles utilisables dans un modèle sont les suivants (documentation
Microsoft) :

Caractère Description

\ Marque le caractère suivant comme caractère spécial ou littéral. Par exemple, "n"
correspond au caractère "n". "\n" correspond à un caractère de nouvelle ligne. La
séquence "\\" correspond à "\", tandis que "\(" correspond à "(".

^ Correspond au début de la saisie.

$ Correspond à la fin de la saisie.

* Correspond au caractère précédent zéro fois ou plusieurs fois. Ainsi, "zo*"
correspond à "z" ou à "zoo".

+ Correspond au caractère précédent une ou plusieurs fois. Ainsi, "zo+" correspond
à "zoo", mais pas à "z".

? Correspond au caractère précédent zéro ou une fois. Par exemple, "a?ve?"
correspond à "ve" dans "lever".

. Correspond à tout caractère unique, sauf le caractère de nouvelle ligne.

(modèle) Recherche le modèle et mémorise la correspondance. La sous-chaîne correspondante
peut être extraite de la collection Matches obtenue, à l'aide d'Item [0]...[n]. Pour
trouver des correspondances avec des caractères entre parenthèses (), utilisez "\("
ou "\)".

x|y Correspond soit à x soit à y. Par exemple, "z|foot" correspond à "z" ou à "foot".
"(z|f)oo" correspond à "zoo" ou à "foo".

{n} n est un nombre entier non négatif. Correspond exactement à n fois le caractère.
Par exemple, "o{2}" ne correspond pas à "o" dans "Bob," mais aux deux premiers

http://tahe.developpez.com 42

"o" dans "fooooot".

{n,} n est un entier non négatif. Correspond à au moins n fois le caractère. Par exemple,
"o{2,}" ne correspond pas à "o" dans "Bob", mais à tous les "o" dans "fooooot".
"o{1,}" équivaut à "o+" et "o{0,}" équivaut à "o*".

{n,m} m et n sont des entiers non négatifs. Correspond à au moins n et à au plus m fois le
caractère. Par exemple, "o{1,3}" correspond aux trois premiers "o" dans
"foooooot" et "o{0,1}" équivaut à "o?".

[xyz] Jeu de caractères. Correspond à l'un des caractères indiqués. Par exemple, "[abc]"
correspond à "a" dans "plat".

[^xyz] Jeu de caractères négatif. Correspond à tout caractère non indiqué. Par exemple,
"[^abc]" correspond à "p" dans "plat".

[a-z] Plage de caractères. Correspond à tout caractère dans la série spécifiée. Par
exemple, "[a-z]" correspond à tout caractère alphabétique minuscule compris entre
"a" et "z".

[^m-z] Plage de caractères négative. Correspond à tout caractère ne se trouvant pas dans la
série spécifiée. Par exemple, "[^m-z]" correspond à tout caractère ne se trouvant
pas entre "m" et "z".

\b Correspond à une limite représentant un mot, autrement dit, à la position entre un
mot et un espace. Par exemple, "er\b" correspond à "er" dans "lever", mais pas à
"er" dans "verbe".

\B Correspond à une limite ne représentant pas un mot. "en*t\B" correspond à "ent"
dans "bien entendu".

\d Correspond à un caractère représentant un chiffre. Équivaut à [0-9].

\D Correspond à un caractère ne représentant pas un chiffre. Équivaut à [^0-9].

\f Correspond à un caractère de saut de page.

\n Correspond à un caractère de nouvelle ligne.

\r Correspond à un caractère de retour chariot.

\s Correspond à tout espace blanc, y compris l'espace, la tabulation, le saut de page,
etc. Équivaut à "[\f\n\r\t\v]".

\S Correspond à tout caractère d'espace non blanc. Équivaut à "[^ \f\n\r\t\v]".

\t Correspond à un caractère de tabulation.

\v Correspond à un caractère de tabulation verticale.

\w Correspond à tout caractère représentant un mot et incluant un trait de
soulignement. Équivaut à "[A-Za-z0-9_]".

\W Correspond à tout caractère ne représentant pas un mot. Équivaut à "[^A-Za-z0-
9_]".

\num Correspond à num, où num est un entier positif. Fait référence aux correspondances
mémorisées. Par exemple, "(.)\1" correspond à deux caractères identiques
consécutifs.

\n Correspond à n, où n est une valeur d'échappement octale. Les valeurs
d'échappement octales doivent comprendre 1, 2 ou 3 chiffres. Par exemple, "\11"
et "\011" correspondent tous les deux à un caractère de tabulation. "\0011"
équivaut à "\001" & "1". Les valeurs d'échappement octales ne doivent pas excéder
256. Si c'était le cas, seuls les deux premiers chiffres seraient pris en compte dans
l'expression. Permet d'utiliser les codes ASCII dans des expressions régulières.

http://tahe.developpez.com 43

\xn Correspond à n, où n est une valeur d'échappement hexadécimale. Les valeurs
d'échappement hexadécimales doivent comprendre deux chiffres obligatoirement.
Par exemple, "\x41" correspond à "A". "\x041" équivaut à "\x04" & "1". Permet
d'utiliser les codes ASCII dans des expressions régulières.

Un élément dans un modèle peut être présent en 1 ou plusieurs exemplaires. Considérons
quelques exemples autour du symbole \d qui représente 1 chiffre :

modèle signification
\d un chiffre
\d? 0 ou 1 chiffre
\d* 0 ou davantage de chiffres
\d+ 1 ou davantage de chiffres
\d{2} 2 chiffres
\d{3,} au moins 3 chiffres
\d{5,7} entre 5 et 7 chiffres

Imaginons maintenant le modèle capable de décrire le format attendu pour une chaîne de
caractères :

chaîne recherchée modèle
une date au format jj/mm/aa \d{2}/\d{2}/\d{2}
une heure au format hh:mm:ss \d{2}:\d{2}:\d{2}
un nombre entier non signé \d+
un suite d'espaces éventuellement vide \s*
un nombre entier non signé qui peut être précédé ou suivi
d'espaces

\s*\d+\s*

un nombre entier qui peut être signé et précédé ou suivi d'espaces \s*[+|-]?\s*\d+\s*
un nombre réel non signé qui peut être précédé ou suivi d'espaces \s*\d+(.\d*)?\s*
un nombre réel qui peut être signé et précédé ou suivi d'espaces \s*[+|]?\s*\d+(.\d*)?\s*
une chaîne contenant le mot juste \bjuste\b

On peut préciser où on recherche le modèle dans la chaîne :

modèle signification
^modèle le modèle commence la chaîne
modèle$ le modèle finit la chaîne
^modèle$ le modèle commence et finit la chaîne
modèle le modèle est cherché partout dans la chaîne en commençant par le début de celle-ci.

chaîne recherchée modèle
une chaîne se terminant par un point d'exclamation !$
une chaîne se terminant par un point \.$
une chaîne commençant par la séquence // ^//
une chaîne ne comportant qu'un mot éventuellement suivi ou
précédé d'espaces

^\s*\w+\s*$

une chaîne ne comportant deux mot éventuellement suivis ou
précédés d'espaces

^\s*\w+\s*\w+\s*$

une chaîne contenant le mot secret \bsecret\b

Les sous-ensembles d'un modèle peuvent être "récupérés". Ainsi non seulement, on peut vérifier
qu'une chaîne correspond à un modèle particulier mais on peut récupérer dans cette chaîne les
éléments correspondant aux sous-ensembles du modèle qui ont été entourés de parenthèses.

http://tahe.developpez.com 44

Ainsi si on analyse une chaîne contenant une date jj/mm/aa et si on veut de plus récupérer les
éléments jj, mm, aa de cette date on utilisera le modèle (\d\d)/(\d\d)/(\d\d).

Voyons sur cette exemple, comment on opère avec vbscript.

1. il nous faut tout d'abord créer un objet RegExp (Regular Expression)

set modele=new regexp

2. ensuite on fixe le modèle à tester

modele.pattern="(\d\d)/(\d\d)/(\d\d)"

3. on peut vouloir ne pas faire de différence entre majuscules et minuscules (par défaut elle
est faite). Ici ça n'a aucune importance.

modele.IgnoreCase=true

4. on peut vouloir rechercher le modèle plusieurs fois dans la chaîne (par défaut ce n'est pas
fait)

modele.Global=true

Une recherche globale n'a de sens que si le modèle utilisé ne fait pas référence au début
ou à la fin de la chaîne.

5. on recherche alors toutes les correspondances du modèle dans la chaîne :

set correspondances=modele.execute(chaine)

La méthode execute d'un objet RegExp rend une collection d'objets de type match. Cet
objet a une propriété value qui est l'élément de chaine correspondant au modèle. Si on a
écrit modele.global=true, on peut avoir plusieurs correspondances. C'est pourquoi le résultat
de la méthode execute est une collection de correspondances.

6. le nombre de correspondances est donné par correspondances.count. Si ce nombre
vaut 0, c'est que le modèle n'a été trouvé nulle part. La valeur de la correspondance n° i
est donnée par correspondances(i).value. Si le modèle contient des sous-modèles entre
parenthèses, alors l'éléments de correspondances(i) correspondant à la parenthèse j du
modèle est correspondances(i).submatches(j).

Tout ceci est montré dans l'exemple qui suit :

Programme
1. ' expression régulière
2.
3. ' on veut vérifier qu'une chaîne contient une date au format jj/mm/aa
4.
5. Option Explicit
6. Dim modele
7.
8. ' on définit le modèle
9. Set modele=new regexp
10. modele.pattern="\b(\d\d)/(\d\d)/(\d\d)\b" ' une date n'importe où dans la chaîne
11. modele.global=true ' on recherchera le modèle plusieurs fois

dans la chaîne
12.
13. ' c'est l'utilisateur qui donne la chaîne dans laquelle on cherchera le modèle
14. Dim chaine, correspondances, i
15.
16. chaine=""
17. ' on boucle tant que chaine<>"fin"
18. Do While true
19. ' on demande à l'utilisateur de taper un texte

http://tahe.developpez.com 45

20. wscript.stdout.writeLine "Tapez un texte contenant des dates au format jj/mm/aa et fin pour arrêter : "
21. chaine=wscript.stdin.readLine
22. ' fini si chaine=fin
23. If chaine="fin" Then Exit Do
24. ' on compare la chaîne lue au modèle de la date
25. Set correspondances=modele.execute(chaine)
26. ' a-t-on trouvé une correspondance
27. If correspondances.count<>0 Then
28. ' on a au moins une correspondance
29. For i=0 To correspondances.count-1
30. ' on affiche la correspondance i
31. wscript.echo "J'ai trouvé la date " & correspondances(i).value
32. ' on récupère les sous-éléments de la correspondance i
33. wscript.echo "Les éléments de la date " & i & " sont (" & correspondances(i).submatches(0) & "," _
34. & correspondances(i).submatches(1) & "," & correspondances(i).submatches(2) & ")"
35. Next
36. Else
37. ' pas de correspondance
38. wscript.echo "Je n'ai pas trouvé de date au format jj/mm/aa dans votre texte"
39. End If
40. Loop
41.
42. ' fini
43. wscript.quit 0

Résultats

1. Tapez un texte contenant des dates au format jj/mm/aa et fin pour arrÛter :
2. aujourd'hui on est le 01/01/01 et demain sera le 02/01/02
3. J'ai trouvé la date 01/01/01
4. Les éléments de la date 0 sont (01,01,01)
5. J'ai trouvé la date 02/01/02
6. Les éléments de la date 1 sont (02,01,02)
7.
8. Tapez un texte contenant des dates au format jj/mm/aa et fin pour arrÛter :
9. une date au format incorrect : 01/01/2002
10. Je n'ai pas trouvé de date au format jj/mm/aa dans votre texte
11.
12. Tapez un texte contenant des dates au format jj/mm/aa et fin pour arrÛter :
13. une suite de dates : 10/10/10, 11/11/11, 12/12/12
14. J'ai trouvé la date 10/10/10
15. Les éléments de la date 0 sont (10,10,10)
16. J'ai trouvé la date 11/11/11
17. Les éléments de la date 1 sont (11,11,11)
18. J'ai trouvé la date 12/12/12
19. Les éléments de la date 2 sont (12,12,12)
20.
21. Tapez un texte contenant des dates au format jj/mm/aa et fin pour arrÛter :
22. fin

Avec les expressions régulières, le programme testant qu'une saisie clavier est bien un nombre
entier positif pourrait s'écrire comme suit :

Programme
1. ' lecture d'une donnée jusqu'à ce que celle-ci soit reconnue comme un nombre
2.
3. Option Explicit
4.
5. Dim fini, nombre
6.
7. ' on définit le modèle d'un nombre entier positif (mais qui peut être nul)
8. Dim modele
9. Set modele=new regexp
10. modele.pattern="^\s*\d+\s*$"
11.
12. ' on boucle tant que la donnée saisie n'est pas correcte
13. ' la boucle est contrôlée par un booléen fini, mis à faux au départ (= ce n'est pas fini)
14.
15. fini=false
16. Do While Not fini
17. ' on demande le nombre
18. wscript.stdout.write "Tapez un nombre entier >0: "
19. ' on le lit
20. nombre=wscript.stdin.readLine
21. ' on teste le format de la donnée lue
22. Dim correspondances
23. Set correspondances=modele.execute(nombre)
24. ' le modèle a-t-il été vérifié ?
25. If correspondances.count<>0 Then
26. ' c'est un entier mais est-il >0 ?
27. nombre=cint(nombre)
28. If nombre>0 Then
29. fini=true

http://tahe.developpez.com 46

30. End If
31. End If
32. ' msg d'erreur éventuel
33. If Not fini Then wscript.echo "Erreur, vous n'avez pas tapé un nombre entier >0.

Recommencez svp..."
34. Loop
35.
36. ' confirmation
37. wscript.echo "Merci pour le nombre entier >0 : " & nombre
38.
39. ' et fin
40. wscript.quit 0

Résultats
1. Tapez un nombre entier >0: 10.3
2. Erreur, vous n'avez pas tapé un nombre entier >0. Recommencez svp...
3. Tapez un nombre entier >0: abcd
4. Erreur, vous n'avez pas tapé un nombre entier >0. Recommencez svp...
5. Tapez un nombre entier >0: -4
6. Erreur, vous n'avez pas tapé un nombre entier >0. Recommencez svp...
7. Tapez un nombre entier >0: 0
8. Erreur, vous n'avez pas tapé un nombre entier >0. Recommencez svp...
9. Tapez un nombre entier >0: 1
10. Merci pour le nombre entier >0 : 1

Trouver l'expression régulière qui nous permet de vérifier qu'une chaîne correspond bien à un
certain modèle est parfois un véritable défi. Le programme suivant permet de s'entraîner. Il
demande un modèle et une chaîne et indique alors si la chaîne correspond ou non au modèle.

Programme
1. ' expression régulière
2.
3. ' on veut vérifier qu'une chaîne correspond à un modèle
4.
5. Option Explicit
6.
7. ' on définit le modèle
8. Dim modele
9. Set modele=new regexp
10. modele.global=true ' on recherchera le modèle plusieurs fois

dans la chaîne
11.
12. ' c'est l'utilisateur qui donne la chaîne dans laquelle on cherchera le modèle
13. Dim chaine, correspondances, i
14.
15. Do While true
16. ' on demande à l'utilisateur de taper un modèle
17. wscript.stdout.write "Tapez le modèle à tester et fin pour arrêter : "
18. modele.pattern=wscript.stdin.readLine
19. ' fini ?
20. If modele.pattern="fin" Then Exit Do
21. ' on demande à l'utilisateur les chaînes à comparer au modèle
22. Do While true
23. ' on demande à l'utilisateur de taper un modèle
24. wscript.stdout.writeLine "Tapez la chaîne à tester avec le modèle [" & modele.pattern & "] et fin pour

arrêter : "
25. chaine=wscript.stdin.readLine
26. ' fini ?
27. If chaine="fin" Then Exit Do
28. ' on compare la chaîne lue au modèle de la date
29. Set correspondances=modele.execute(chaine)
30. ' a-t-on trouvé une correspondance
31. If correspondances.count<>0 Then
32. ' on a au moins une correspondance
33. For i=0 To correspondances.count-1
34. ' on affiche la correspondance i
35. wscript.echo "J'ai trouvé la correspondance " & correspondances(i).value
36. Next
37. Else
38. ' pas de correspondance
39. wscript.echo "Je n'ai pas trouvé de correspondance"
40. End If
41. Loop
42. Loop
43.
44. ' fini
45. wscript.quit 0

Résultats

1. Tapez le modèle à tester et fin pour arrêter : ^\s*\d+(\,\d+)*\s*$

http://tahe.developpez.com 47

2.
3. Tapez la chaîne à tester avec le modèle [^\s*\d+(\,\d+)*\s*$] et fin pour arrêter :
4. 18
5. J'ai trouvé la correspondance [18]
6.
7. Tapez la chaîne à tester avec le modèle [^\s*\d+(\,\d+)*\s*$] et fin pour arrêter :
8. 145.678
9. Je n'ai pas trouvé de correspondance
10.
11. Tapez la chaîne à tester avec le modèle [^\s*\d+(\,\d+)*\s*$] et fin pour arrêter :
12. 145,678
13. J'ai trouvé la correspondance [145,678]

 4.3 Intercepter les erreurs d'exécution

Une autre méthode de gestion des erreurs d'exécution est de les laisser se produire, d'en être
avertis et de les gérer alors. Normalement lorsqu'une erreur se passe à l'exécution, WSH affiche
un message d'erreur et le programme est arrêté. Deux instructions nous permettent de modifier
ce fonctionnement :

1. on error resume next

Cette instruction indique au système (WSH) que nous allons gérer les erreurs nous-
mêmes. Après cette instruction, toute erreur est simplement ignorée. par le système.

2. on error goto 0

Cette instruction nous ramène au fonctionnement normal de gestion des erreurs.

Lorsque l'instruction on error resume next est active, nous devons gérer nous-mêmes les
erreurs qui peuvent survenir. L'objet Err nous y aide. Cet objet a diverses propriétés et méthodes
dont nous retiendrons les deux suivantes :

 number : un nombre entier numéro de la dernière erreur qui s'est produite. 0 veut dire
"pas d'erreur"

 description : le message d'erreur qu'aurait affiché le système si on n'avait pas émis
l'instruction on error resume next

Regardons l'exemple qui suit :

Programme Résultats
1. ' erreur non gérée
2.
3. Option Explicit
4. Dim nombre
5.
6. nombre=cdbl("abcd")
7. wscript.echo "nombre=" & nombre

1. C:\ err5.vbs(6, 1) Erreur d'exécution Microsoft VBScript: Type
incompatible: 'cdbl'

Gérons maintenant l'erreur :

Programme Résultats
1. ' erreur gérée
2.
3. Option Explicit
4. Dim nombre
5.
6. ' on gère les erreurs nous-mêmes
7. On Error Resume Next
8. nombre=cdbl("abcd")
9. ' y-a-t-il eu erreur ?
10. If Err.number<>0 Then
11. wscript.echo "L'erreur [" &

err.description & "] s'est
produite"

12. On Error GoTo 0
13. wscript.quit 1
14. End If

1. L'erreur [Type incompatible] s'est produite

http://tahe.developpez.com 48

15. ' pas d'erreur - on revient au
fonctionnement normal

16. On Error GoTo 0
17. wscript.echo "nombre=" & nombre
18. wscript.quit 0

Réécrivons le programme de saisie d'un entier >0 avec cette nouvelle méthode :

Programme
' lecture d'une donnée jusqu'à ce que celle-ci soit reconnue comme un nombre

Option Explicit

Dim fini, nombre

' on boucle tant que la donnée saisie n'est pas correcte
' la boucle est contrôlée par un booléen fini, mis à faux au départ (= ce n'est pas fini)

fini=false
Do While Not fini
 ' on demande le nombre
 wscript.stdout.write "Tapez un nombre entier >0: "
 ' on le lit
 nombre=wscript.stdin.readLine
 ' on teste le format de la donnée lue
 On Error Resume Next
 nombre=cdbl(nombre)
 If err.number=0 Then
 ' pas d'erreur c'est un nombre
 ' on revient au mode normal de gestion des erreurs
 On Error GoTo 0
 ' est-ce un entier >0
 If (nombre-int(nombre))=0 And nombre>0 Then
 fini=true
 End If
 End If
 ' on revient au mode normal de gestion des erreurs
 On Error GoTo 0
 ' msg d'erreur éventuel
 If Not fini Then wscript.echo "Erreur, vous n'avez pas tapé un nombre entier >0.
Recommencez svp..."
Loop

' confirmation
wscript.echo "Merci pour le nombre entier >0 : " & nombre

' et fin
wscript.quit 0

Résultats
Tapez un nombre entier >0: 4.5
Erreur, vous n'avez pas tapé un nombre entier >0. Recommencez svp...
Tapez un nombre entier >0: 4,5
Erreur, vous n'avez pas tapé un nombre entier >0. Recommencez svp...
Tapez un nombre entier >0: abcd
Erreur, vous n'avez pas tapé un nombre entier >0. Recommencez svp...
Tapez un nombre entier >0: -4
Erreur, vous n'avez pas tapé un nombre entier >0. Recommencez svp...
Tapez un nombre entier >0: 1
Merci pour le nombre entier >0 : 1

Commentaires :
 Cette méthode est parfois la seule utilisable. Il ne faut alors pas oublier de revenir au

mode normal de gestion des erreurs dès que la séquence d'instructions susceptible de
générer l'erreur est terminée.

 4.4 Application au programme de calcul d'impôts

Nous reprenons le programme de calcul d'impôts déjà écrit pour, cette fois, vérifier la validité des
arguments passés au programme :

Programme

' calcul de l'impôt d'un contribuable
' le programme doit être appelé avec trois paramètres : marié enfants salaire
' marié : caractère O si marié, N si non marié

http://tahe.developpez.com 49

' enfants : nombre d'enfants
' salaire : salaire annuel sans les centimes

' aucune vérification de la validité des données n'est faite mais on
' vérifie qu'il y en a bien trois

' déclaration obligatoire des variables
Option Explicit
Dim syntaxe
syntaxe= _
 "Syntaxe : pg marié enfants salaire" & vbCRLF & _
 "marié : caractère O si marié, N si non marié" & vbCRLF & _
 "enfants : nombre d'enfants (entier >=0)" & vbCRLF & _
 "salaire : salaire annuel sans les centimes (entier >=0)"

' on vérifie qu'il y a 3 arguments
 Dim nbArguments
 nbArguments=wscript.arguments.count
 If nbArguments<>3 Then
 ' msg d'erreur
 wscript.echo syntaxe & vbCRLF & vbCRLF & "erreur : nombre d'arguments incorrect"
 ' arrêt avec code d'erreur 1
 wscript.quit 1
 End If

' on récupère les arguments en vérifiant leur validité
' un argument est transmis au programme sans espaces devant et derrière
' on utilisera des expression régulières pour vérifier la validité des données
 Dim modele, correspondances
 Set modele=new regexp

 ' le statut marital doit être parmi les caractères oOnN
 modele.pattern="^[oOnN]$"
 Set correspondances=modele.execute(wscript.arguments(0))
 If correspondances.count=0 Then
 ' erreur
 wscript.echo syntaxe & vbCRLF & vbCRLF & "erreur : argument marie incorrect"
 ' on quitte
 wscript.quit 2
 End If
 ' on récupère la valeur
 Dim marie
 If lcase(wscript.arguments(0)) = "o"Then
 marie=true
 Else
 marie=false
 End If

 ' enfants doit être un nombre entier >=0
 modele.pattern="^\d{1,2}$"
 Set correspondances=modele.execute(wscript.arguments(1))
 If correspondances.count=0 Then
 ' erreur
 wscript.echo syntaxe & vbCRLF & vbCRLF & "erreur : argument enfants incorrect"
 ' on quitte
 wscript.quit 3
 End If
 ' on récupère la valeur
 Dim enfants
 enfants=cint(wscript.arguments(1))

 ' salaire doit être un entier >=0
 modele.pattern="^\d{1,9}$"
 Set correspondances=modele.execute(wscript.arguments(2))
 If correspondances.count=0 Then
 ' erreur
 wscript.echo syntaxe & vbCRLF & vbCRLF & "erreur : argument salaire incorrect"
 ' on quitte
 wscript.quit 4
 End If
 ' on récupère la valeur
 Dim salaire
 salaire=clng(wscript.arguments(2))

 ' on définit les données nécessaire au calcul de l'impôt dans 3 tableaux
 Dim limites, coeffn, coeffr
 limites=array(12620,13190,15640,24740,31810,39970,48360, _
 55790,92970,127860,151250,172040,195000,0)
 coeffr=array(0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45, _
 0.5,0.55,0.6,0.65)
 coeffn=array(0,631,1290.5,2072.5,3309.5,4900,6898.5,9316.5, _
 12106,16754.5,23147.5,30710,39312,49062)

 ' on calcule le nombre de parts
 Dim nbParts
 If marie=true Then
 nbParts=(enfants/2)+2

http://tahe.developpez.com 50

 Else
 nbParts=(enfants/2)+1
 End If
 If enfants>=3 Then nbParts=nbParts+0.5

 ' on calcule le quotient familial et le revenu imposable
 Dim revenu, qf
 revenu=0.72*salaire
 qf=revenu/nbParts

 ' on calcule l'impôt
 Dim i, impot
 i=0
 Do While i<ubound(limites) And qf>limites(i)
 i=i+1
 Loop
 impot=int(revenu*coeffr(i)-nbParts*coeffn(i))

 ' on affiche le résultat
 wscript.echo "impôt=" & impot

 ' on quitte sans erreur
 wscript.quit 0

Résultats

C:\>cscript impots2.vbs

Syntaxe : pg marié enfants salaire
marié : caractère O si marié, N si non marié
enfants : nombre d'enfants (entier >=0)
salaire : salaire annuel sans les centimes (entier >=0)

erreur : nombre d'arguments incorrect

C:\>cscript impots2.vbs a b c

Syntaxe : pg marié enfants salaire
marié : caractère O si marié, N si non marié
enfants : nombre d'enfants (entier >=0)
salaire : salaire annuel sans les centimes (entier >=0)

erreur : argument marie incorrect

C:\>cscript impots2.vbs o b c

Syntaxe : pg marié enfants salaire
marié : caractère O si marié, N si non marié
enfants : nombre d'enfants (entier >=0)
salaire : salaire annuel sans les centimes (entier >=0)

erreur : argument enfants incorrect

C:\>cscript impots2.vbs o 2 c

Syntaxe : pg marié enfants salaire
marié : caractère O si marié, N si non marié
enfants : nombre d'enfants (entier >=0)
salaire : salaire annuel sans les centimes (entier >=0)

erreur : argument salaire incorrect

C:\>cscript impots2.vbs o 2 200000

impôt=22504

http://tahe.developpez.com 51

 5 Les fonctions et procédures

 5.1 Les fonctions prédéfinies de vbscript

La richesse d'un langage dérive en grande partie de sa bibliothèque de fonctions, ces dernières
pouvant être encapsulées dans des objets sous le nom de méthodes. Sous cet aspect, on peut
considérer que vbscript est plutôt pauvre.
Le tableau suivant définit les fonctions de VBScript hors objets. Nous ne les détaillerons pas.
Leur nom est en général une indication de leur rôle. Le lecteur consultera la documentation pour
avoir des détails sur une fonction particulière.

Abs Array Asc Atn
CBool CByte CCur CDate
CDbl Chr CInt CLng
Conversions Cos CreateObject CSng
Date DateAdd DateDiff DatePart
DateSerial DateValue Day Derived Maths
Eval Exp Filter FormatCurrenc

y
FormatDateTime FormatNumber FormatPercent GetLocale
GetObject GetRef Hex Hour
InputBox InStr InStrRev Int, Fixs
IsArray IsDate IsEmpty IsNull
IsNumeric IsObject Join LBound
LCase Left Len LoadPicture
Log LTrim; RTrim; and Trims Maths Mid
Minute Month MonthName MsgBox
Now Oct Replace RGB
Right Rnd Round ScriptEngine
ScriptEngineBuildVersion ScriptEngineMajorVersion ScriptEngineMinorVersio

n
Second

SetLocale Sgn Sin Space
Split Sqr StrComp String
Tan Time Timer TimeSerial
TimeValue TypeName UBound UCase
VarType Weekday WeekdayName Year

 5.2 Programmation modulaire

Décrire la solution programmée d'un problème, c'est décrire la suite d'actions élémentaires
exécutables par l'ordinateur et capables de résoudre le problème. Selon les langages ces
opérations élémentaires sont plus ou moins sophistiquées. On trouve par exemple:

. lire une donnée provenant du clavier ou du disque

. écrire une donnée à l'écran, sur imprimante, sur disque, etc

. calculer des expressions

. se déplacer dans un fichier

. ...

http://tahe.developpez.com 52

../../../../st-2020/st-2020/cours/vbscript/vsfctyear.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctweekdayname.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctweekday.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctvartype.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctucase.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctubound.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcttypename.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcttimevalue.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcttimeserial.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcttimer.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcttime.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcttan.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctstring.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctstrcomp.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctsqr.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctsplit.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctspace.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctsin.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctsgn.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctsetlocale.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctsecond.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctscriptengineminorversion.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctscriptengineminorversion.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctscriptenginemajorversion.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctscriptenginebuildversion.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctscriptengine.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctround.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctrnd.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctright.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctrgb.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctreplace.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctoct.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctnow.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctmsgbox.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctmonthname.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctmonth.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctminute.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctmid.htm
../../../../st-2020/st-2020/cours/vbscript/vsidxmathfunctions.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctltrim.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctlog.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctloadpicture.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctlen.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctleft.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctlcase.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctlbound.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctjoin.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctisobject.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctisnumeric.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctisnull.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctisempty.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctisdate.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctisarray.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctint.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctinstrrev.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctinstr.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctinputbox.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcthour.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcthex.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctgetref.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctgetobject.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctgetlocale.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctformatpercent.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctformatnumber.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctformatdatetime.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctformatcurrency.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctformatcurrency.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctfilter.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctexp.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcteval.htm
../../../../st-2020/st-2020/cours/vbscript/vsgrpderivedmath.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctday.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctdatevalue.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctdateserial.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctdatepart.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctdatediff.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctdateadd.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctdate.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcsng.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcreateobject.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcos.htm
../../../../st-2020/st-2020/cours/vbscript/vsidxconversion.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctclng.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcint.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctchr.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcdbl.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcdate.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctccur.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcbyte.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcbool.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctatn.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctasc.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctarray.htm

Décrire un problème complexe peut nécessiter plusieurs milliers de ces instructions élémentaires
et plus. Il est alors très difficile pour l'esprit humain d'avoir une vue globale d'un programme.
Devant cette difficulté d'appréhender le problème dans sa globalité, on le décompose alors en
sous-problèmes plus simples à résoudre. Considérons le problème suivant : Trier une liste de
valeurs numériques tapées au clavier et afficher la liste triée à l'écran.

On peut dans un premier temps décrire la solution sous la forme suivante:

 début
 lire les valeurs et les mettre dans un tableau T
 trier le tableau T
 écrire les valeurs triées du tableau T à l'écran
 fin

On a décomposé le problème en 3 sous-problèmes, plus simples à résoudre. L'écriture
algorithmique est souvent plus formalisée que la précédente et l'algorithme s'écrira plutôt:

 début
 lire_tableau(T)
 trier_tableau(T)
 écrire_tableau(T)
 fin

où T représente un tableau. Les opérations

. lire_tableau(T)

. trier_tableau(T)

. écrire_tableau(T)

sont des opérations non élémentaires qui doivent être décrites à leur tour par des opérations
élémentaires. Ceci est fait dans ce qu'on appelle des modules. La donnée T est appelée un
paramètre du module. C'est une information que le programme appelant passe au module appelé
(paramètre d'entrée) ou reçoit du module appelé (paramètre de sortie). Les paramètres d'un
module sont donc les informations qui sont échangées entre le programme appelant et le module
appelé.

module lire_tableau(T)

module trier_tableau(T)

module écrire_tableau(T)

Le module lire_tableau(T) pourrait être décrit comme suit :
http://tahe.developpez.com 53

début
écrire "Tapez la suite de valeurs à trier sous la forme val1 val2 ... : "
lire valeurs
construire tableau T à partir de la chaîne valeurs

fin

Ici, nous avons suffisamment décrit le module lire_tableau. En effet, les trois actions nécessaires
ont une traduction immédiate en vbscript. La dernière nécessitera l'utilisation de la fonction split.
Si vbscript n'avait pas cette fonction, l'action 3 devrait être décomposée à son tour en actions
élémentaires ayant un équivalent immédiat en vbscript.

Le module écrire_tableau(T) pourrait être décrit comme suit :

début
construire chaîne texte "valeur1,valeur2,...." à partir du tableau T
écrire texte

fin

Le module écrire_tableau(T) pourrait être décrit comme suit (on suppose que les indices des
éléments de T commencent à 0) :

début
 N<-- indice dernier élément du tableau T
 pour IFIN variant de N à 1
 faire
 //on recherche l'indice IMAX du plus gd élément de T
 // IFIN est l'indice du dernier élément de T

 chercher_max(T, IFIN, IMAX)

 // on échange l'élément le plus grand de T avec le dernier élément de T

 échanger (T, IMAX, IFIN)

 finfaire
FIN

Ici l'algorithme utilise de nouveau des actions non élémentaires:
 . chercher_max(T, IFIN, IMAX)
 . échanger(T, IMAX, IFIN)

chercher_max(T, IFIN, IMAX) rend l'indice IMAX de l'élément le plus grand du tableau T dont
l'indice du dernier élément est IFIN.

échanger(T, IMAX, IFIN) échange 2 éléments du tableau T , ceux d'indice IMAX et IFIN.

http://tahe.developpez.com 54

Il faut donc décrire les nouvelles opérations non élémentaires.

module chercher_max(A, IFIN, IMAX) début
 IMAX<--0

 pour i variant de 1 à IFIN
 faire
 si T[i]>T[IMAX] alors
 début
 IMAX<--i
 fin
 finfaire
 fin

module échanger(T IMAX, IFIN) début
 temp<----T[IMAX]
 T[IMAX]<---T[IFIN]
 T[IFIN]<---temp
 fin

Le problème initial a été complètement décrit à l'aide d'opérations élémentaires vbscript et peut
donc maintenant faire l'objet d'une traduction dans ce langage. On notera que les actions
élémentaires peuvent différer d'un langage à l'autre et que donc l'analyse d'un problème doit à un
certain moment tenir compte du langage de programmation utilisé. Un objet qui existe dans un
langage peut ne pas exister dans un autre et modifier alors l'algorithme utilisé. Ainsi, si un langage
avait une fonction de tri, il serait ici absurde de ne pas l'utiliser.

Le principe appliqué ici, est celui dit de l'analyse descendante. Si on représente l'ossature de la
solution, on a la chose suivante :

On a une structure en arbre.

 5.3 Les fonctions et procédures vbscript

Une fois l'analyse modulaire opérée, le programmeur peut traduire les modules de son algorithme
en fonctions ou procédures vbscript. Les fonctions et procédures admettent toutes deux des paramètres
d'entrée/sortie mais la fonction rend un résultat qui permet son utilisation dans des expressions
alors que la procédure n'en rend pas.

 5.3.1 Déclaration des fonctions et procédures vbscript

La déclaration d'une procédure vbscript est la suivante

sub nomProcédure([Byref/Byval] param1, [Byref/Byval] param2, ...)
instructions

end sub

et celle d'une fonction
http://tahe.developpez.com 55

function nomFonction([Byref/Byval] param1, [Byref/Byval] param2, ...)
instructions

end sub

Pour rendre son résultat, la fonction doit comporter une instruction d'affectation du résultat à
une variable portant le nom de la fonction :

nomFonction=résultat

L'exécution d'une fonction ou procédure s'arrête de deux façons :

1. à la rencontre de l'instruction de fin de fonction (end function) ou fin de procédure (end
sub)

2. à la rencontre de l'instruction de sortie de fonction (exit function) ou de procédure (exit
sub)

Pour la fonction, on se rappellera que le résultat doit avoir été affecté à une variable portant le
nom de la fonction avant que celle-ci ne se termine par un end function ou exit function.

 5.3.2 Modes de passage des paramètres d'une fonction ou procédure

Dans la déclaration des paramètres d'entrée-sortie d'une fonction ou procédure, on précise le
mode (byRef,byVal) de transmission du paramètre du programme appelant vers le programme
appelé :

sub nomProcédure([Byref/Byval] param1, [Byref/Byval] param2, ...)

function nomFonction([Byref/Byval] param1, [Byref/Byval] param2, ...)

Lorsque le mode de transmission byRef ou byVal n'est pas précisé, c'est le mode byRef qui est
utilisé.

Paramètres effectifs, paramètres formels

Soit une fonction vbscript définie par

function nomFonction([Byref/Byval] paramForm1, [Byref/Byval] paramForm2, ...)
...
end function

Les paramètres parmamFormi utilisés dans la définition de la fonction ou de la procédure sont
appelés paramètres formels. La fonction précédente pourra être utilisée à partir du programme
principal ou d'un autre module par une instruction du genre :

résultat=nomFonction(paramEff1, paramEff2, ...)

Les paramètres parmamEffi utilisés dans l'appel à la fonction ou la procédure sont appelés
paramètres effectifs. Lorsque l'exécution de la fonction nomFonction commence, les paramètres
formels reçoivent les valeurs des paramètres effectifs correspondants. Les mots clés byRef et
byVal fixent le mode de transmission de ces valeurs.

Mode de transmission par valeur (byVal)

Lorsqu'un paramètre formel précise ce mode de transmission, le paramètre formel et le
paramètre effectif sont alors deux variables différentes. La valeur du paramètre effectif est copiée
dans le paramètre formel avant exécution de la fonction ou procédure. Si celle-ci modifie la valeur
du paramètre formel au cours de son exécution, cela ne modifie en rien la valeur du paramètre
effectif correspondant. Ce mode de transmission convient bien aux paramètres d'entrée de la
http://tahe.developpez.com 56

fonction ou procédure.

Mode de transmission par référence (byRef)

Ce mode de transmission est le mode par défaut si aucun mode de transmission du paramètre
n'est indiqué. Lorsqu'un paramètre formel précise ce mode de transmission, le paramètre formel
et le paramètre effectif correspondant sont une seule et même variable. Ainsi si la fonction
modifie le paramètre formel, le paramètre effectif est également modifié. Ce mode de
transmission convient bien :

 aux paramètres de sortie car la valeur de ceux-ci doivt être transmise au programme
appelant

 aux paramètres d'entrée coûteux à recopier tels les tableaux

Le programme suivant montre des exemples de passage de paramètres :

Programme

Sub proc1(byval i, ByRef j, k)
 ' i est passé par valeur (byval) - le paramètre effectif et le paramètre formel sont
alors différents
 ' j est passé par valeur (byref) - le paramètre effectif et le paramètre formel sont
alors identiques
 ' le mode de passage de k n'est pas précisé. Par défaut, c'est par référence
 i=i+1
 j=j+1
 k=k+1
 affiche "dans proc1",i,j,k
End Sub

 Sub affiche(byval msg, ByVal i, ByVal j, ByVal k)
 ' affiche les valeurs de i et j et k
 wscript.echo msg & " i=" & i & " j=" & j & " k=" & k
End Sub

' ------------- appels aux fonctions et procédures

' init i et j
 i=4:j=5 : k=6

' vérification
 affiche "dans programme principal, avant l'appel à proc1 :",i,j,k

http://tahe.developpez.com 57

' appel procédure proc1
 proc1 i,j,k

' vérification
 affiche "dans programme principal, après l'appel à proc1 :",i,j,k

' fin
 wscript.quit 0

Résultats

dans programme principal, avant l'appel à proc1 : i=4 j=5 k=6
dans proc1 i=5 j=6 k=7
dans programme principal, après l'appel à proc1 : i=4 j=6 k=7

Commentaires
 Dans un script vbscript, il n'y a pas de place particulière pour les fonctions et les

procédures. Elles peuvent être n'importe où dans le texte source. En général, on les
regroupe soit au début soit à la fin et on fait en sorte que le programme principal
constitue un bloc continu.

 5.3.3 Syntaxe d'appel des fonctions et procédures

Soit une procédure p admettant des paramètres formels pf1, pf2, ...

 l'appel à la procédure p se fait sous la forme

p pe1, pe2, ...

sans parenthèses autour des paramètres

 si la procédure p n'admet aucun paramètre, on peut indifféremment utiliser l'appel p ou
p() et la déclaration sub p ou sub p()

Soit une fonction f admettant des paramètres formels pf1, pf2, ...

 l'appel à la fonction f se fait sous la forme

résultat=f(pe1, pe2, ...)

les parenthèses autour des paramètres sont obligatoires. Si la fonction f n'admet aucun
paramètre, on peut indifféremment utiliser l'appel f ou f() et la déclaration function f ou
function f().

 le résultat de la fonction f peut être ignoré par le programme appelant. La fonction f est
alors considérée comme une procédure et suit les règles d'appel des procédures. On écrit
alors f pe1, pe2, ... (sans parenthèses) pour appeler la fonction f.

Si la fonction ou procédure est une méthode d'objet, il semblerait que les règles soient quelque
peu différentes et non homogènes.

 ainsi on peut écrire MyFile.WriteLine "Ceci est un test." ou MyFile.WriteLine("Ceci
est un test.")

 mais si on peut écrire wscript.echo 4, on ne peut pas écrire wscript.echo(4).

On s'en tiendra aux règles suivantes :
 pas de parenthèses autour des paramètres d'une procédure ou d'une fonction utilisée

comme une procédure

http://tahe.developpez.com 58

 parenthèses autour des paramètres d'une fonction

 5.3.4 Quelques exemples de fonctions

On trouvera ci-dessous quelques exemples de définitions et utilisations de fonctions :

Programme

 Function plusgrandque(byval i, ByVal j)
 ' rend le booléen vrai si i>j, le booléen faux sinon

 ' vérification des données
 If isnumeric(i) And isnumeric(j) Then
 If i>j Then
 plusgrandque=true
 Else
 plusgrandque=false
 End If
 Else
 wscript.echo "Arguments (" & i & "," & j & ") erronés"
 plusgrandque=false
 End If
 Exit Function
End Function

 Function rendUnTableau(byval n)
 ' rend un tableau de n éléments
 tableau=array()
 ' vérification validité du paramètre n
 If isnumeric(n) And n>=1 Then
 ReDim Preserve tableau(n)
 For i= 0 To n-1
 tableau(i)=i
 Next
 Else
 wscript.echo "Argument [" & n & "] erroné"
 End If
 ' on rend le résultat
 rendUnTableau=tableau
End Function

 Function argumentsVariables(byref arguments)
 ' arguments est un tableau de nombres dont on rend la somme
 somme=0
 For i=0 To ubound(arguments)
 somme=somme+arguments(i)
 Next
 argumentsVariables=somme
End Function

 ' deux fonctions sans paramètres déclarées de 2 façons différentes
 Function sansParametres1
 sansParametres=4
 End Function

 Function sansParametres2()
 sansParametres=4
 End Function

' ------------- appels aux fonctions et procédures

' appels fonction plusgrandque
 wscript.echo "plusgrandque(10,6)=" & plusgrandque(10,6)
 wscript.echo "plusgrandque(6,10)=" & plusgrandque(6,10)
 wscript.echo "plusgrandque(6,6)=" & plusgrandque(6,6)
 wscript.echo "plusgrandque(6,'a')=" & plusgrandque(6,"a")

' appels à la fonction rendUnTableau
 monTableau=rendUnTableau(10)
 For i=0 To ubound(monTableau)
 wscript.echo monTableau(i)
 Next
 monTableau=rendUnTableau(-6)
 For i=0 To ubound(monTableau)
 wscript.echo monTableau(i)
 Next

' appels à la fonction argumentsVariables
 wscript.echo "somme=" & argumentsVariables(array(-1,2,7,8))
 wscript.echo "somme=" & argumentsVariables(array(-1,10,12))

' appels des fonctions sans paramètres
 res=sansParametres1

http://tahe.developpez.com 59

 res=sansParametres1()
 sansParametres1
 sansParametres1()

 res=sansParametres2
 res=sansParametres2()
 sansParametres2
 sansParametres2()

' fin
 wscript.quit 0

Résultats
plusgrandque(10,6)=Vrai
plusgrandque(6,10)=Faux
plusgrandque(6,6)=Faux
Arguments (6,a) erronés
plusgrandque(6,'a')=Faux
0
1
2
3
4
5
6
7
8
9

Argument [-6] erroné
somme=16
somme=21
somme=10

Commentaires

 la fonction rendUnTableau montre qu'une fonction peut rendre plusieurs résultats et non
un seul. Il suffit qu'elle les place dans un variant tableau et qu'elle rende ce variant comme
résultat.

 inversement la fonction argumentsVariables montre qu'on peut écrire une fonction qui
admet un nombre variable d'arguments. Il suffit là également de les mettre dans un
variant tableau et de faire de ce variant un paramètre de la fonction.

 5.3.5 Paramètre de sortie ou résultat d'une fonction

Supposons que l'analyse d'une application ait montré la nécessité d'un module M avec des
paramètres d'entrée Ei et des paramètres de sortie Sj. Rappelons que les paramètres d'entrée sont
des informations que le programme appelant donne au programme appelé et qu'inversement les
paramètres de sortie sont des informations que le programme appelé donne au programme
appelant. On a en vbscript plusieurs solutions pour les paramètres de sortie :

 s'il n'y a qu'un seul paramètre de sortie, on peut en faire le résultat d'une fonction. Il n'y a
alors plus de paramètre de sortie mais simplement un résultat de fonction.

 s'il y a n paramètres de sortie, l'un d'entre-eux peut servir de résultat de fonction , les n-1
autres restant des paramètres de sortie. On peut aussi ne pas utiliser de fonction mais une
procédure à n paramètres de sortie. On peut également utiliser une fonction qui rendra
un tableau dans lequel on aura placé les n valeurs à rendre au programme appelant. On se
rappellera que le programme appelé rend ses résultats au programme appelant par recopie
de valeurs. Cette recopie est évitée dans le cas de paramètres de sortie passés par
référence. Il y a donc dans cette dernière solution un gain de temps.

 5.4 Le programme Vbscript de tri de valeurs

Nous avions commencé la discussion sur la programmation modulaire par l'étude algorithmique
d'un tri de valeurs numériques tapées au clavier. Voici la traduction VBScript qui pourrait en être
faite :
http://tahe.developpez.com 60

Programme
' programme principal
Option Explicit

Dim T ' le tableau de valeurs à trier

' lecture des valeurs
T=lire_tableau
' tri des valeurs
trier_tableau T
' affichage des valeurs triées
ecrire_tableau T

' fin
wscript.quit 0

' ---------- fonctions & procédures

' -------- lire_tableau
Function lire_tableau
 ' on demande les valeurs
 wscript.stdout.write "Tapez les valeurs à trier sous la forme val1 val2 ... valn : "
 ' on les lit
 Dim valeurs
 valeurs=wscript.stdin.readLine
 ' on les met dans un tableau
 lire_tableau=split(valeurs," ")
End Function

' -------- ecrire_tableau
Sub ecrire_tableau(byref T)
 ' affiche le contenu du tableau T
 wscript.echo join(T," ")
End Sub

' -------- trier_tableau
Sub trier_tableau (byref T)
 ' tri le tableau T en ordre croissant

 ' on cherche l'indice imax du tableau T[0..ifin]
 ' pour échanger T[imax] avec le dernier élément du tableau T[0..ifin]
 ' ensuite on recommence avec un tableau ayant 1 élément de moins

 Dim ifin, imax, temp
 For ifin=ubound(T) To 1 Step -1
 ' on cherche l'indice imax du tableau T[0..ifin]
 imax=chercher_max(T,ifin)
 ' on l'échange le max avec le dernier élément du tableau T[0..ifin]
 temp=T(ifin):T(ifin)=T(imax):T(imax)=temp
 Next
End Sub

' -------- chercher_max
Function chercher_max(byRef T, ByVal ifin)
 ' on cherche l'indice imax du tableau T[0..ifin]
 Dim i, imax
 imax=0
 For i=1 To ifin
 If cdbl(T(i))>cdbl(T(imax)) Then imax=i
 Next

 ' On rend le résultat
 chercher_max=imax
End Function

Résultats
Tapez les valeurs à trier sous la forme val1 val2 ... valn : 10 9 8 7 6 1
1 6 7 8 9 10

Commentaires :

 le module échanger qui avait été identifié dans l'algorithme initial n'a pas fait ici l'objet d'un
module en vbscript parce que jugé trop simple pour faire l'objet d'un module particulier.

 5.5 Le programme IMPOTS sous forme modulaire

Nous reprenons le programme de calcul de l'impôt écrit cette fois sous forme modulaire

http://tahe.developpez.com 61

Programme
' calcul de l'impôt d'un contribuable
' le programme doit être appelé avec trois paramètres : marié enfants salaire
' marié : caractère O si marié, N si non marié
' enfants : nombre d'enfants
' salaire : salaire annuel sans les centimes

' déclaration obligatoire des variables
 Option Explicit
 Dim erreur

' on récupère les arguments en vérifiant leur validité
 Dim marie, enfants, salaire
 erreur=getArguments(marie,enfants,salaire)
 ' erreur ?
 If erreur(0)<>0 Then wscript.echo erreur(1) : wscript.quit erreur(0)

' on récupère les données nécessaires au calcul de l'impôt
 Dim limites, coeffR, coeffN
 getData limites,coeffR,coeffN

 ' on affiche le résultat
 wscript.echo "impôt=" & calculerImpot(marie,enfants,salaire,limites,coeffR,coeffN)

 ' on quitte sans erreur
 wscript.quit 0

' ------------ fonctions et procédures

' ----------- getArguments
Function getArguments(byref marie, ByRef enfants, ByRef salaire)
 ' doit récupérer trois valeurs passées comme argument au programme principal
 ' un argument est transmis au programme sans espaces devant et derrière
 ' on utilisera des expression régulières pour vérifier la validité des données

 ' rend un variant tableau erreur à 2 valeurs
 ' erreur(0) : code d'erreur, 0 si pas d'erreur
 ' erreur(1) : message d'erreur si erreur sinon la chaîne vide

 Dim syntaxe
 syntaxe= _
 "Syntaxe : pg marié enfants salaire" & vbCRLF & _
 "marié : caractère O si marié, N si non marié" & vbCRLF & _
 "enfants : nombre d'enfants (entier >=0)" & vbCRLF & _
 "salaire : salaire annuel sans les centimes (entier >=0)"

' on vérifie qu'il y a 3 arguments
 Dim nbArguments
 nbArguments=wscript.arguments.count
 If nbArguments<>3 Then
 ' msg d'erreur
 getArguments= array(1,syntaxe & vbCRLF & vbCRLF & "erreur : nombre d'arguments
incorrect")
 ' fin
 Exit Function
 End If

 Dim modele, correspondances
 Set modele=new regexp

 ' le statut marital doit être parmi les caractères oOnN
 modele.pattern="^[oOnN]$"
 Set correspondances=modele.execute(wscript.arguments(0))
 If correspondances.count=0 Then
 ' msg d'erreur
 getArguments=array(2,syntaxe & vbCRLF & vbCRLF & "erreur : argument marie incorrect")
 ' on quitte
 Exit Function
 End If
 ' on récupère la valeur
 If lcase(wscript.arguments(0)) = "o"Then
 marie=true
 Else
 marie=false
 End If

 ' enfants doit être un nombre entier >=0
 modele.pattern="^\d{1,2}$"
 Set correspondances=modele.execute(wscript.arguments(1))
 If correspondances.count=0 Then
 ' erreur
 getArguments= array(3,syntaxe & vbCRLF & vbCRLF & "erreur : argument enfants incorrect")
 ' on quitte
 Exit Function
 End If

http://tahe.developpez.com 62

 ' on récupère la valeur
 enfants=cint(wscript.arguments(1))

 ' salaire doit être un entier >=0
 modele.pattern="^\d{1,9}$"
 Set correspondances=modele.execute(wscript.arguments(2))
 If correspondances.count=0 Then
 ' erreur
 getArguments= array(4,syntaxe & vbCRLF & vbCRLF & "erreur : argument salaire incorrect")
 ' on quitte
 Exit Function
 End If
 ' on récupère la valeur
 salaire=clng(wscript.arguments(2))

 ' c'est fini sans erreur
 getArguments=array(0,"")
End Function

' ----------- getData
Sub getData(byref limites, ByRef coeffR, ByRef coeffN)
 ' on définit les données nécessaire au calcul de l'impôt dans 3 tableaux
 limites=array(12620,13190,15640,24740,31810,39970,48360, _
 55790,92970,127860,151250,172040,195000,0)
 coeffr=array(0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45, _
 0.5,0.55,0.6,0.65)
 coeffn=array(0,631,1290.5,2072.5,3309.5,4900,6898.5,9316.5, _
 12106,16754.5,23147.5,30710,39312,49062)
End Sub

' ----------- calculerImpot
Function calculerImpot(byval marie,ByVal enfants,ByVal salaire, ByRef limites, ByRef
coeffR, ByRef coeffN)

 ' on calcule le nombre de parts
 Dim nbParts
 If marie=true Then
 nbParts=(enfants/2)+2
 Else
 nbParts=(enfants/2)+1
 End If
 If enfants>=3 Then nbParts=nbParts+0.5

 ' on calcule le quotient familial et le revenu imposable
 Dim revenu, qf
 revenu=0.72*salaire
 qf=revenu/nbParts

 ' on calcule l'impôt
 Dim i, impot
 i=0
 Do While i<ubound(limites) And qf>limites(i)
 i=i+1
 Loop
 calculerImpot=int(revenu*coeffr(i)-nbParts*coeffn(i))
End Function

Commentaires

 la fonction getArguments permet de récupérer les informations (marie, enfants, salaire)
du contribuable. Ici, elles sont passées en arguments au programme vbscript. Si cela
devait changer, par exemple si ces arguments venaient d'une interface graphique, seule la
procédure getArguments devrait être réécrite et pas les autres.

 la fonction getArguments peut détecter des erreurs sur les arguments. Lorsque ceci se
produit, on aurait pu décider d'arrêter l'exécution du programme dans la fonction
getArguments par une instruction wscript.quit. Ceci ne doit jamais être fait dans une
fonction ou procédure. Si une fonction ou procédure détecte une erreur, elle doit le
signaler d'une façon ou d'une autre au programme appelant. C'est à lui de prendre la
décision d'arrêter l'exécution ou non, pas à la procédure. Dans notre exemple, le
programme appelant pourrait décider de redemander à l'utilisateur de retaper la donnée
erronée au clavier plutôt que d'arrêter l'exécution.

 ici, la fonction getArguments rend un variant tableau où le 1er élément est un code d'erreur
(0 si pas d'erreur) et le second un message d'erreur si il y a eu erreur. En testant le résultat

http://tahe.developpez.com 63

obtenu, le programme appelant peut savoir s'il y a eu erreur ou non.
 la procédure getData permet d'obtenir les données nécessaires au calcul de l'impôt. Ici

elles sont directement définies dans la procédure getData. Si ces données devaient
provenir d'une autre source, d'un fichier ou d'une base de données par exemple, seule la
procédure getData devrait être réécrite et pas les autres.

 la fonction calculerImpot permet de calculer l'impôt une fois que toutes les données ont
été obtenues quelque soit la façon dont elles ont été obtenues.

 on notera donc qu'une écriture modulaire permet une (ré)utilisation de certains modules
dans différents contextes. Ce concept a été dans les vingt dernières années fortement
développé dans le concept d'objet.

http://tahe.developpez.com 64

 6 Les fichiers texte

Un fichier texte est un fichier contenant des lignes de texte. Examinons la création et l'utilisation
de tels fichiers sur des exemples.

 6.1 Création et utilisation

Programme

Résultats

C:\>cscript fic1.vbs

C:\>dir

 FIC1 VBS 352 07/01/02 7:07 fic1.vbs
TESTFILE TXT 25 07/01/02 7:07 testfile.txt

C:\>more testfile.txt

Ceci est un autre test.

Commentaires

 la ligne 7 crée un objet fichier de type "Scripting.FileSystemObject" par la fonction
CreateObject("Scripting.FileSystemObject"). Un tel objet permet l'accès à tout fichier du
système pas simplement à des fichiers texte.

 la ligne 9 crée un objet "TextStream". La création de cet objet est associée à la création du
fichier testfile.txt. Ce fichier n'est pas désigné par un nom absolu du genre c:\dir1\dir2\....
\testfile.txt mais par un nom relatif testfile.txt. Il sera alors créé dans le répertoire d'où sera
lancée la commande d'exécution du fichier.

 le système de fichiers du système windows n'a pas connaissance de concepts tels que
fichier texte ou fichier non texte. Il ne connaît que des fichiers. C'est donc au programme
qui exploite ce fichier de savoir s'il va le traiter comme un fichier texte ou non.

 La ligne 9 crée un objet d'où la commande set utilisée pour l'affectation. La création d'un
objet fichier texte passe par la création de 2 objets :

o la création d'un objet Scripting.FileSystemObject (ligne 7)
o puis par la création d'un objet "TextStream" (fichier texte) par la méthode

http://tahe.developpez.com 65

OpenTextFile de l'objet Scripting.FileSystemObject qui admet plusieurs paramètres :
 le nom du fichier à gérer (obligatoire)
 le mode d'utilisation du fichier. C'est un entier avec 3 valeurs possibles :

 1 : utilisation du fichier en lecture
 2 : utilisation du fichier en écriture. S'il n'existe pas déjà et si le

3ième paramètre est présent et a la valeur true, il est créé sinon il
n'est pas. S'il existe déjà, il est écrasé.

 8 : utilisation du fichier en ajout, c.a.d. écriture en fin de fichier. Si
le fichier n'existe pas déjà et si le 3ième paramètre est présent et a
la valeur true, il est créé sinon il n'est pas.

 la ligne 11 écrit une ligne de texte avec la méthode WriteLine de l'objet TextStream créé.
 la ligne 13 "ferme" le fichier. On ne peut alors plus écrire ou lire dedans.
 la ligne 16 crée un nouvel objet "TextStream" pour exploiter le même fichier que

précédemment mais cette fois-ci en mode "ajout". Les lignes qui seront écrites le seront
derrière les lignes existantes.

 la ligne 18 écrit deux nouvelles lignes sachant que la constante vbCRLF est la marque de
fin de ligne des fichiers texte.

 la ligne 20 ferme de nouveau le fichier
 la ligne 23 le rouvre en mode "lecture" : on va lire le contenu du fichier.
 La ligne 27 lit une ligne de texte avec la méthode ReadLine de l'objet TextStream. Lorsque

le fichier vient d'être "ouvert", on est positionné sur la 1ère ligne de texte de celui-ci.
Lorsque celle-ci a été lue par la méthode ReadLine, on est positionné sur la seconde ligne.
Ainsi la méthode Readline non seulement lit la ligne courante mais "avance" ensuite
automatiquement à la ligne suivante.

 Pour ligne toutes les lignes de texte, la méthode ReadLine doit être appliquée de façon
répétée dans une boucle. Celle-ci (ligne 26) se termine lorsque l'attribut AtEndOfStream de
l'objet TextStream a la valeur true. Cela signifie alors qu'il n'y a plus de lignes à lire dans le
fichier.

 6.2 Les cas d'erreur

On rencontre deux cas d'erreur fréquents :
 ouverture en lecture d'un fichier qui n'existe pas
 ouverture en écriture ou ajout d'un fichier qui n'existe pas avec comme le troisième

paramètre à false dans l'appel à la méthode OpenTextFile.

Le programme suivant montre comment détecter ces erreurs :

Programme

' création & remplissage d'un fichier texte
Option Explicit
Dim objFichier,MyFile
Const ForReading = 1, ForWriting = 2, ForAppending = 8
Dim codeErreur

' on crée un objet fichier
Set objFichier=CreateObject("Scripting.FileSystemObject")

' on ouvre un fichier texte devant exister en lecture
On Error Resume Next
Set MyFile= objFichier.OpenTextFile("abcd", ForReading)
codeErreur=err.number
On Error GoTo 0
If codeErreur<>0 Then
 ' le fichier n'existe pas
 wscript.echo "Le fichier [abcd] n'existe pas"
Else
 ' on ferme le fichier texte
 MyFile.Close
End If

http://tahe.developpez.com 66

' on ouvre un fichier texte devant exister en écriture
On Error Resume Next
Set MyFile= objFichier.OpenTextFile("abcd", ForWriting, False)
codeErreur=err.number
On Error GoTo 0
If codeErreur<>0 Then
 wscript.echo "Le fichier [abcd] n'existe pas"
Else
 ' on ferme le fichier texte
 MyFile.Close
End If

' on ouvre un fichier texte devant exister en ajout
On Error Resume Next
Set MyFile= objFichier.OpenTextFile("abcd", ForAppending, False)
codeErreur=err.number
On Error GoTo 0
If codeErreur<>0 Then
 wscript.echo "Le fichier [abcd] n'existe pas"
Else
 ' on ferme le fichier texte
 MyFile.Close
End If

' fin
wscript.quit 0

Résultats

C:\>dir

FIC1 VBS 964 07/01/02 7:54 fic1.vbs
TESTFILE TXT 0 07/01/02 8:18 testfile.txt
FIC2 VBS 1 252 07/01/02 8:23 fic2.vbs
 3 fichier(s) 2 216 octets
 2 répertoire(s) 4 007.11 Mo libre

C:\>cscript fic2.vbs

Le fichier [abcd] n'existe pas
Le fichier [abcd] n'existe pas
Le fichier [abcd] n'existe pas

 6.3 L'application IMPOTS avec un fichier texte

Nous reprenons l'application de calcul de l'impôt en supposant que les données nécessaires au
calcul de l'impôt sont dans un fichier texte appelé data.txt :

12620 13190 15640 24740 31810 39970 48360 55790 92970 127860 151250 172040 195000 0
0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65
0 631 1290,5 2072,5 3309,5 4900 6898,5 9316,5 12106 16754,5 23147,5 30710 39312 49062

Les trois lignes contiennent respectivement les données des tableaux limites, coeffR et coeffN de
l'application. Grâce à la modularisation de notre application, les modifications interviennent
essentiellement dans la procédure getData chargée de construire les trois tableaux. Le nouveau
programme est le suivant :

Programme

' calcul de l'impôt d'un contribuable
' le programme doit être appelé avec trois paramètres : marié enfants salaire
' marié : caractère O si marié, N si non marié
' enfants : nombre d'enfants
' salaire : salaire annuel sans les centimes

' déclaration obligatoire des variables
 Option Explicit
 Dim erreur

' on récupère les arguments en vérifiant leur validité
 Dim marie, enfants, salaire
 erreur=getArguments(marie,enfants,salaire)
 ' erreur ?
 If erreur(0)<>0 Then wscript.echo erreur(1) : wscript.quit erreur(0)

' on récupère les données nécessaires au calcul de l'impôt
 Dim limites, coeffR, coeffN
 erreur=getData(limites,coeffR,coeffN)
http://tahe.developpez.com 67

 ' erreur ?
 If erreur(0)<>0 Then wscript.echo erreur(1) : wscript.quit 5

 ' on affiche le résultat
 wscript.echo "impôt=" & calculerImpot(marie,enfants,salaire,limites,coeffR,coeffN)

 ' on quitte sans erreur
 wscript.quit 0

' ------------ fonctions et procédures

' ----------- getArguments
Function getArguments(byref marie, ByRef enfants, ByRef salaire)
 ' doit récupérer trois valeurs passées comme argument au programme principal
 ' un argument est transmis au programme sans espaces devant et derrière
 ' on utilisera des expression régulières pour vérifier la validité des données

 ' rend un variant tableau erreur à 2 valeurs
 ' erreur(0) : code d'erreur, 0 si pas d'erreur
 ' erreur(1) : message d'erreur si erreur sinon la chaîne vide

 Dim syntaxe
 syntaxe= _
 "Syntaxe : pg marié enfants salaire" & vbCRLF & _
 "marié : caractère O si marié, N si non marié" & vbCRLF & _
 "enfants : nombre d'enfants (entier >=0)" & vbCRLF & _
 "salaire : salaire annuel sans les centimes (entier >=0)"

' on vérifie qu'il y a 3 arguments
 Dim nbArguments
 nbArguments=wscript.arguments.count
 If nbArguments<>3 Then
 ' msg d'erreur
 getArguments= array(1,syntaxe & vbCRLF & vbCRLF & "erreur : nombre d'arguments
incorrect")
 ' fin
 Exit Function
 End If

 Dim modele, correspondances
 Set modele=new regexp

 ' le statut marital doit être parmi les caractères oOnN
 modele.pattern="^[oOnN]$"
 Set correspondances=modele.execute(wscript.arguments(0))
 If correspondances.count=0 Then
 ' msg d'erreur
 getArguments=array(2,syntaxe & vbCRLF & vbCRLF & "erreur : argument marie incorrect")
 ' on quitte
 Exit Function
 End If
 ' on récupère la valeur
 If lcase(wscript.arguments(0)) = "o"Then
 marie=true
 Else
 marie=false
 End If

 ' enfants doit être un nombre entier >=0
 modele.pattern="^\d{1,2}$"
 Set correspondances=modele.execute(wscript.arguments(1))
 If correspondances.count=0 Then
 ' erreur
 getArguments= array(3,syntaxe & vbCRLF & vbCRLF & "erreur : argument enfants incorrect")
 ' on quitte
 Exit Function
 End If
 ' on récupère la valeur
 enfants=cint(wscript.arguments(1))

 ' salaire doit être un entier >=0
 modele.pattern="^\d{1,9}$"
 Set correspondances=modele.execute(wscript.arguments(2))
 If correspondances.count=0 Then
 ' erreur
 getArguments= array(4,syntaxe & vbCRLF & vbCRLF & "erreur : argument salaire incorrect")
 ' on quitte
 Exit Function
 End If
 ' on récupère la valeur
 salaire=clng(wscript.arguments(2))

 ' c'est fini sans erreur
 getArguments=array(0,"")
End Function

' ----------- getData

http://tahe.developpez.com 68

Function getData(byref limites, ByRef coeffR, ByRef coeffN)
 ' les données des trois tableaux limites, coeffR, coeffN sont dans un fichier texte
 ' appelé data.txt. Chaque tableau occupe une ligne sous la forme val1 val2 ... valn
 ' on trouve dans l'ordre limites, coeffR, coeffN

 ' rend un variant erreur tableau à 2 éléments pour gérer l'éventuelle erreur
 ' erreur(0) : 0 si pas d'erreur, un nombre entier >0 sinon
 ' erreur(1) : le message d'erreur si erreur

 Dim objFichier,MyFile,codeErreur
 Const ForReading = 1, dataFileName="data.txt"

 ' on crée un objet fichier
 Set objFichier=CreateObject("Scripting.FileSystemObject")
 ' on ouvre le fichier data.txt en lecture
 On Error Resume Next
 Set MyFile= objFichier.OpenTextFile(dataFileName, ForReading)
 ' erreur ?
 codeErreur=err.number
 On Error GoTo 0
 If codeErreur<>0 Then
 ' il y a eu erreur - on la note
 getData=array(1,"Impossible d'ouvrir le fichier des données [" & dataFileName & "] en lecture")
 ' on rentre
 Exit Function
 End If

 ' on suppose maintenant que le contenu est correct et on ne fait aucune vérification
 ' on lit les 3 lignes

 ' limites
 Dim ligne, i
 ligne=MyFile.ReadLine
 getDataFromLine ligne,limites

 ' coeffR
 ligne=MyFile.ReadLine
 getDataFromLine ligne,coeffR

 ' coeffN
 ligne=MyFile.ReadLine
 coeffN=split(ligne," ")
 getDataFromLine ligne,coeffN

 ' on ferme le fichier
 MyFile.close

 ' c'est fini sans erreur
 getData=array(0,"")
End Function

' ----------- getDataFromLine
Sub getDataFromLine(byref ligne, ByRef tableau)
 ' met dans tableau les valeurs numériques contenues dans ligne
 ' celles-ci sont séparées par un ou plusieurs espaces

 ' au départ le tableau est vide
 tableau=array()
 ' on définit un modèle pour la ligne
 Dim modele, correspondances
 Set modele= New RegExP
 With modele
 .pattern="\d+,\d+|\d+" ' 140,5 ou 140
 .global=true ' toutes les valeurs
 End With

 ' on analyse la ligne
 Set correspondances=modele.execute(ligne)
 Dim i
 For i=0 To correspondances.count-1
 ' on redimensionne le tableau
 ReDim Preserve tableau(i)
 ' on affecte une valeur au nouvel élément
 tableau(i)=cdbl(correspondances(i).value)
 Next

 'fin
End Sub

' ----------- calculerImpot
Function calculerImpot(byval marie,ByVal enfants,ByVal salaire, ByRef limites, ByRef
coeffR, ByRef coeffN)

http://tahe.developpez.com 69

 ' on calcule le nombre de parts
 Dim nbParts
 If marie=true Then
 nbParts=(enfants/2)+2
 Else
 nbParts=(enfants/2)+1
 End If
 If enfants>=3 Then nbParts=nbParts+0.5

 ' on calcule le quotient familial et le revenu imposable
 Dim revenu, qf
 revenu=0.72*salaire
 qf=revenu/nbParts

 ' on calcule l'impôt
 Dim i, impot
 i=0
 Do While i<ubound(limites) And qf>limites(i)
 i=i+1
 Loop
 calculerImpot=int(revenu*coeffr(i)-nbParts*coeffn(i))
End Function

Commentaires :

 dans le fichier texte data.txt, les valeurs peuvent être séparées par un ou plusieurs
espaces, d'où l'impossibilité d'utiliser la fonction split pour récupérer les valeurs de la
ligne. Il a fallu passer par une expression régulière

 la fonction getData rend, outre les trois tableaux limites, coeffR, coeffN, un résultat
indiquant s'il y a eu erreur ou non. Ce résultat est un variant tableau de eux éléments. Le
premier élément est un code d'erreur (0 si pas d'erreur), le second le message d'erreur s'il
y a eu erreur.

 la fonction getData ne teste pas la validité des valeurs trouvées dans le fichier data.txt. En
situation réelle, elle devrait le faire.

http://tahe.developpez.com 70

	1 Introduction
	2 Les contextes d'exécution de VBSCRIPT
	2.1 Introduction
	2.2 Le conteneur WSH
	2.3 La forme d'un script WSH
	2.4 L'objet WSCRIPT
	2.5 Le conteneur Internet Explorer
	2.6 L'aide de WSH

	3 Les bases de la programmation VBSCRIPT
	3.1 Afficher des informations
	3.2 Ecriture des instructions dans un script Vbscript
	3.3 Écrire avec la fonction msgBox
	3.4 Les données utilisables en Vbscript
	3.5 Les sous-types du type variant
	3.6 Connaître le type exact de la donnée contenue dans un variant
	3.7 Déclarer les variables utilisées par le script
	3.8 Les fonctions de conversion
	3.9 Lire des données tapées au clavier
	3.10 Saisir des données avec la fonction inputbox
	3.11 Utiliser des objets structurés
	3.12 Affecter une valeur à une variable
	3.13 Évaluer des expressions
	3.14 Contrôler l'exécution du programme
	3.14.1 Exécuter des actions de façon conditionnelle
	3.14.2 Exécuter des actions de façon répétée
	3.14.3 Terminer l'exécution du programme

	3.15 Les tableaux de données dans un variant
	3.16 Les variables tableaux
	3.17 Les fonctions split et join
	3.18 Les dictionnaires
	3.19 Trier un tableau ou un dictionnaire
	3.20 Les arguments d'un programme
	3.21 Une première application : IMPOTS

	4 La gestion des erreurs
	4.1 Connaître le type exact d'une donnée
	4.2 Les expressions régulières
	4.3 Intercepter les erreurs d'exécution
	4.4 Application au programme de calcul d'impôts

	5 Les fonctions et procédures
	5.1 Les fonctions prédéfinies de vbscript
	5.2 Programmation modulaire
	5.3 Les fonctions et procédures vbscript
	5.3.1 Déclaration des fonctions et procédures vbscript
	5.3.2 Modes de passage des paramètres d'une fonction ou procédure
	5.3.3 Syntaxe d'appel des fonctions et procédures
	5.3.4 Quelques exemples de fonctions
	5.3.5 Paramètre de sortie ou résultat d'une fonction

	5.4 Le programme Vbscript de tri de valeurs
	5.5 Le programme IMPOTS sous forme modulaire

	6 Les fichiers texte
	6.1 Création et utilisation
	6.2 Les cas d'erreur
	6.3 L'application IMPOTS avec un fichier texte

