Introduction au langage VBScript par
'exemple

Serge Tahé, janvier 2002

Ce site a été créé avec le convertisseur [Word ou ODT - > HTMIL] créé par I'TA Gemini 3 en janvier 2026.

https://tahe.developpez.com - Ce cours tutoriel écrit par Serge Tahé est mis a disposition du public selon les termes de la Licence Creative Commons Attribution — Pas d"Utilisation Commerciale — 1/70

Partage dans les Mémes Conditions 3.0 non transposé

https://tahe.developpez.com/
https://stahe.github.io/word-odt-vers-html-janv-2026/
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.fr
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.fr

1 Introduction

Le PDF de ce document est disponible |ICI|.

Ce document a pour but de fournir les bases du langage vbscript ainsi que des exemples d'utilisation dans
différents domaines. VBScript est un langage de script sous Windows. Il peut fonctionner dans différents
conteneurs tels

» Windows Seripting Host pour une utilisation directe sous Windows notamment pout écrire des scripts
d'administration systeme

» Internet Explorer. 11 est alors utilisé au sein de pages HTML auxquelles il améne une certaine
interactivité impossible a atteindre avec le seul langage HTML.

¥ Internet Information Server (11S) le serveur Web de Microsoft sur N'T/2000 et son équivalent Personal Web
Server (PWS) sur Win9x. Dans ce cas, vbscript est utilisé pour faire de la programmation coté serveur
web, technologie appelée ASP (Active Server Pages) par Microsoft.

Par ailleurs, VBSCRIPT étant un langage dérivé de Visual Basic pour Windows, il peut servir d'introduction a
ce langage parmi les plus répandus dans le domaine Windows ainsi qu'a la version Application de VB, appelée
VBA (Visual Basic pour Applications). VBA est utilisé par exemple dans tout la suite Office de Microsoft
notamment dans Excel. Ainsi VBSCRIPT est une voie d'entrée au développement dans un vaste domaine
d'applications windows.

VBScript n'est pas un langage a objets méme s'il en a une certaine coloration. La notion d'héritage, par
exemple, n'existe pas. Il peut cependant utiliser les objets mis a sa disposition par le conteneur dans lequel il
s'exécute ainsi que plus généralement les composants ActiveX disponibles sur la machine Windows. C'est cet
aspect qui donne sa puissance a VBScript, langage qui intrinsequement est assez pauvre mais qui grace aux
objets mis a sa disposition peut rivaliser avec des langages de script au départ plus riches tels Perl, Javascript,
Python. C'est un langage simple a apprendre, a utiliser et qui ouvre la voie a l'utilisation de Visual Basic pour
Windows dont il est directement dérivé.

Ce document n'est pas un cours d'algorithmique. L'art de la programmation est supposé acquis. Un
travail de lecture actif est nécessaire. La meilleure facon d'utiliser ce document est probablement de tester sur
sa propre machine les exemples qui y sont donnés. Le conteneur WSH est normalement livré en standard
avec le systeme Windows. La version la plus récente est disponible gratuitement sur le site de Microsoft
(http://www.microsoft.com). Pour trouver I'URL exacte permettant le téléchargement de WSH, on pourra
chercher les mots clés "Windows Scripting” avec un moteur de recherche sur le Web. Parmi les réponses, on
devrait trouver I'URL de téléchargement de WSH.

Serge Tahé, janvier 2002

https://tahe.developpez.com - Ce cours tutoriel écrit par Serge Tahé est mis a disposition du public selon les termes de la Licence Creative Commons Attribution — Pas d’Utilisation Commerciale 2/70

Partage dans les Mémes Conditions 3.0 non transposé.

https://tahe.developpez.com/
https://stahe.github.io/vbscript-janv-2002/vbscript-janv-2002.pdf
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.fr
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.fr

2 Les contextes d'exécution de VBSCRIPT

2.1 Introduction

Un programme vbseript ne s'exécute pas directement sous Windows mais dans un conteneur qui
lui fournit un contexte d'exécution et un certain nombre d'objets qui lui sont propres. Par ailleurs,
le programme vbscript peut utiliser des objets mis a sa disposition par le systeme Windows,
objets appelés objets ActiveX.

OS Windows

Conteneur

a4 W (Programme VBScript

Objets du conteneur

Objets Windows
(Active X)

Dans ce document, nous utiliserons deux conteneurs : Windows Scripting Host appelé couramment
WSH et le navigateur Infernet Explorer appelé patfois par la suite IE. Il en existe bien d'autres.
Ainsi, les applications MS-Office sont des conteneurs pour un dérivé de VB appelé VBA (Visual
Basic pour Applications). Il existe par ailleurs de nombreuses applications windows qui
permettent a leurs utilisateurs de dépasser les limites de celle-ci en leur permettant de développer
des programmes s'exécutant au sein de l'application et utilisant les objets proptres a celle-ci.

Le conteneur dans lequel s'exécute le programme vbscript joue un role primordial :

» les objets mis a disposition du programme vbscript par le conteneur changent d'un
conteneur a l'autre. Ainsi WSH met a disposition d'un programme vbs un objet appelé
WSeript qui donne acces, par exemple, aux partages et imprimantes réseau de la machine
hoéte. IE lui, met a disposition du programme vbs, un objet appelé document qui représente
la totalité du document HTML visualisé. Le programme vbs va alors pouvoir agir sur ce
document. Excel lui met a disposition d'un programme VBA des objets représentant des
classeurs, des feuilles de classeurs, des graphiques, etc.... en fait tous les objets manipulés
par Excel.

> siles objets d'un conteneur donnent toute sa puissance a un programme vbscript, il peut
parfois en limiter certains domaines. Ainsi un programme vbscript exécuté dans le
navigateur IE ne peut pas accéder au disque de la machine hote, ceci pour des raisons de
sécurité.

Donc, lorsqu'on parle de programmation vbscript, il faut indiquer dans quel conteneur le

3

programme est exécuté.

Sous windows, vbscript n'est pas le seul langage utilisable dans les conteneurs WSH ou IE. On
peut par exemple utiliser JScript (=JavaScript), PerlScript (=Petl), Python, ... Nombre de ces
langages semblent de prime abord supérieurs a vbscript. Mais ce dernier a cependant de sérieux
atouts :

» VB et ses déclinaisons VBSCRIPT et VBA sont tres répandues sur les machines windows.
Connaitre ce langage parait indispensable.

» Clest davantage les objets utilisables par un programme que le langage utilisé par celui-ci
qui font sa puissance. Or nombre de ces objets sont fournis par les conteneurs et non par
les langages eux-meémes.

Un inconvénient de VBSCRIPT est qu'il n'est pas portable sur un systéme autre que Windows,
par exemple Unix. Ses concurrents Javascript, Perl, Python eux le sont. Si on doit travailler sur
des systemes hétérogenes, il peut étre intéressant voire indispensable d'utiliser le méme langage
sur les différents systemes.

2.2 Le conteneur WSH

Le conteneur WSH (Windows Scripting Host) permet l'exécution, au sein de Windows, de
programmes écrits en divers langages : vbscript, javascript, petlscript, python, ... II existe une
norme a respecter pour qu'un langage puisse étre utilisé au sein de WSH. Tout langage respectant
cette norme est candidat a I'exécution au sein de WSH. On peut imaginer que la liste précédente
des langages s'exécutant dans WSH puisse s'allonger. Un conteneur met a la disposition des
programmes qu'il exécute des objets qui leur donnent leur véritable puissance. Ceci tend a
gommer les différences entre langages puiqu'ils utilisent alors tous le méme ensemble d'objets.
Utiliser un langage plutot qu'un autre peut devenir alors une simple affaire de gott plutot que de
performances.

L'exécution d'un programme dans WSH se fait a l'aide de deux exécutables : wseripr.exe et
eseript.exe. wscript.exe se trouve normalement dans le répertoire d'installation de windows appelé
généralement Yowindir’o :

. C:\ >echo %windir%
. C:\WINDOWS

. C:\>dir c:\windows\wscript.exe
. WSCRIPT EXE 123 280 19/09/01 11:54 wscript.exe

L'exécutable cscript.exe se trouve lui sous Zwindir%\command :

WoONOUA WNER

. C:\>dir c:\windows\cscript.* /s

10.

11. Répertoire de C:\WINDOWS\COMMAND

12. CSCRIPT EXE 102 450 26/06/01 17:49 cscript.exe

Le w de wseript veut dire windows et le ¢ de eseript veut dire console. Un script peut étre exécuté
indifféremment par wscript ou cscript. La différence réside dans le mode d'affichage de messages
al'écran :

» wscript les affiche dans une fenétre

» cscript les affiche a I'écran

Voici un sctipt concon.vbs qui affiche coucon a l'écran :

1" affiche coucou
Zwscript.echo "coucou"

Ouvrons une fenétre DOS et exécutons-le successivement avec wseript et escript :

pos>wscript coucou.vbs

Windows Script Host

coucou

pDos>cscript coucou.vbs

Microsoft (R) Windows Script Host Version 5.6 .
Copyright (C) Microsoft Corporation 1996-2001. Tous droits réservés.

coucou

On voit ci-dessus claitement la différence entre les deux modes. Dans ce document, nous
utiliserons quasi exclusivement le mode console eept. Clest le mode qui convient aux
applications dites "batch" c'est a dire des applications sans interaction avec un utilisateur au
clavier. On notera deux points dans les résultats précédents :

1. On a supposé que les exécutables wscript.exe et cscript.exe étaient tous les deux dans le
"PATH" de la machine, ce qui permet de les lancer en tapant simplement leurs noms. Si
ce n'était pas le cas, il aurait fallu écrire ici :

DOS>c:\windows\wscript coucou.vbs
DOS>c: \windows\command\cscript coucou.vbs

2. On notera que la version de wsh utilisée dans cet exemple et dans la suite du document
est la version 5.6.

3. Le fichier source du script a le suffixe .zbs. Clest le suffixe désignant un script vbseript, un
script javascript étant lui désigné par le suffixe s

Le programme cseript a diverses options de lancement qu'on obtient en lancant aseript sans
arguments :

1. DOS>cscript

28

3. Microsoft (R) Windows Script Host Version 5.6

4. Copyright (C) Microsoft Corporation 1996-2001. Tous droits réservés.
5o

6. Utilisation : CScript scriptname.extension [option...] [arguments...]

7.

8. Options:

9. //B batch : Supprime 1'affichage des invites et des erreurs de scripts

le. //D Activer le débogage

11. //E:engine Utiliser le moteur pour 1l'exécution de script
12. //H:CScript Remplace 1l'environnement d'exécution de scripts par défaut par CScript.exe
13. //H:WScript tRemplace 1'environnement d'exécution de scripts par défaut par WScript.exe (default)

14. //I Mode interactif (par défaut, contraire de 1l'option //B)

15. //Job :xxxx Exécuter une tache WSF

16. //Logo Afficher un logo (default)

17. //Nologo Empécher 1'affichage d'un logo : Aucune banniére ne s'affiche pendant la durée d'exécution
18. //S Enregistrer les options de ligne de commande actuelles pour cet utilisateur

19. //T:nn Durée d'exécution en secondes : Temps maximal autorisé pour 1'exécution d'un script

20. //X Exécuter un script dans le débogueur

L'argument //nologo supprime l'affichage de la banniére de wsh :

1. C:\>cscript //nologo coucou.vbs
2. coucou

2.3 La forme d'un script WSH

Nous venons de voir un premier script : cozcon.vbs

1" affiche coucou
Zwscript.echo “coucou"

Nous avons indiqué que le suffixe .2bs du fichier désignait un script vbseript. Ce n'est pas une
obligation. Nous aurions pu mettre le script dans un fichier de suffixe .wgf sous la forme suivante
plus complexe :

l<job id="coucou'=

2 <sCcript Tanauage="wvbscript's
3 " affiche Jcoucou

4 wsCript.echo "coucou"

5 o «fsocripts

& o job=

L'exécution de ce script donne la chose suivante :

1. C:\>cscript //nologo coucou2.wsf
2. coucou

Un script WSH peut mélanger les langages :

1l <job id="coucou'=

Z

3 <sCcript Tanguage="wvbscript's

4 " affiche coucou

= wsCript.echo "coucou (vbscript)"

& e feCripts

7

% «sCript lTanguage="jawascript's= I
9 S affiche coucou

10 wscript.echo("coucou (jawvascriptl"l;
11 «fscripts

12

1z <sCript Tanguage="perlscript'=

14 # affiche coucou

15 fwecript-=echo("coucou (perlscriptl'];
le «=fscripts

17

18 e/ jobe

L'exécution de ce script donne la chose suivante :

1. C:\>cscript //nologo coucou3.wsf
2. coucou (vbscript)

3. coucou (javascript)

4. coucou (perlscript)

Nous retiendrons les points suivants :

1. Le conteneur WSH n'est pas lié a un langage. Un script wsh peut mélanger les langages
dans un fichier de suffixe .wsf

2. Le script est alors encadré par des balises <job id="..."> ... </job>
3. A lintérieur de l'application (=job), les langages utilisés par les différentes portions de
code sont balisées par <script language="...."> </script>

4. Ce langage de balisages porte un nom : XML pour eXtended Markup Language. XML ne
définit aucune balise mais des regles d'agencement de balises. Ici on devrait donc dire que
le langage de balisages utilisé dans un script wsh suit la norme XML.

Par la suite, nous utiliserons exclusivement vbscript dans des fichiers .vbs.

2.4 L'objet WSCRIPT

Le conteneur WSH met a la disposition des scripts qu'il exécute un objet appelé wseript. Un objet
a des propriétés et des méthodes :

Objet Propriétés

Méthodes

Yyvwy

Un objet O a des propriétés P/ qui fixent son état. Ainsi un objet #hermomeétre peut avoir une
propriété température. Cette propriété est un des aspects de l'état du thermometre. Une autre
pourrait étre la température maximale Twax qu'il peut supporter.

L'objet Ok peut avoir des méthodes M/ qui permettent a des agents extérieurs soit de :
» connaitre son état
» changer son état

Ainsi notre thermometre, s'il est électronique, pourrait avoir une méthode allumer qui le mettrait
en marche, une autre éfeindre qui 'éteindrait, une autre afficher qui afficherait la température
d'équilibre une fois celle-ci atteinte. En termes de programmation, une méthode est une fonction
qui peut admettre des arguments et rendre des résultats.

En Vbscript, les propriétés Pi d'un objet Obj sont notées Ob).Pi et les méthodes Mj sont notées
Obj.Mj. L'objet wscript de WSH est un objet important pour les méthodes qu'il met a disposition
des scripts. Ainsi sa méthode echo permet d'afficher un message. La syntaxe de cette méthode est
la suivante :

wscript.echo argl, arg2, ..., argn

Les valeurs des arguments arg/ sont alors affichées dans une fenétre (exécution par wscript) ou a
l'écran (exécution par cscript sous DOS).

2.5 Le conteneur Internet Explorer

Nous avons écrit plus haut que Internet Explorer pouvait étre un conteneur pour un script
vbscript. Montrons-le sur un exemple simple. Suit une page HTML (HyperText Markup
Language) appelée coucon2.btm ne contenant pas de script vbscript.

<html= 1
<head=
<title=coucou<stitlex
< /head=
<hody=
Cette page n'a pas de script whscript
< bhody= 2
< html=

WO] G W e P

T

Son chargement direct par Internet Explorer (Fichier/ Ouvrir) donne les résultats suivants :

8 Coucou - Hicnﬂ Internet Explorer
| FEichier Edition Affichage Fayoris Outis 2
R fa)
Précédente Siivarte Arréter Actualiser Démarrage
J Adresse I@ C:h\data‘\sergehwindowsS cripting\wbscripthessais\coucouZ. htm

Cette page n'a pas de script vbscript 2

Le contenu du fichier coucon2.htm nous montre que HTML est un langage de balisage. Connaitre
le langage HTML c'est connaitre ces balises. Celles-ci ont pour but principal d'indiquer au
navigateur comment afficher un document. HTML ne suit pas exactement la norme XML mais
en est proche.

Dans concou2.htm, il y a deux informations a représenter notées 1 et 2. Nous les avons
représentées également dans 'affichage qui en a été fait. C'est la balise <#itle>...</title> qui a fait
que l'information 1 a été placée dans la barre de titre du navigateur et la balise <body>..</body>
qui a fait que l'information 2 a été placée dans la partie document du navigateur.

Nous n'entrerons pas davantage dans I'étude du langage HTML. Modifions le fichier comcon2.htm
en y introduisant un script vbscript et appelons-le maintenant coucoud.him

1 <html=

2 <head=

2 <title=coucousstitles

4 <script language="whscript'=
B " aftfiche coucou

& window.alert "coucou"

7 <FsCripts

5 «/head-

2 «<hodys>

10 Cette page affiche coucou au chargement dans un navigateur Internet Explorer
11 «/body=

12 e /html=

13

Le script vbscript a été placé dans la balise <head>...</head>. 11 aurait pu étre placé ailleurs. 11
affiche "coucou" au chargement initial de la page. Ici, le navigateur doit étre Internet Explorer car
seul ce navigateur est par défaut un conteneur pour des scripts vbscript. L'affichage obtenu est
alors le suivant :

Microzoft Internet Explorer |

& COUCOU

suivi de l'affichage normal de la page :

<3 coucou - Microsoft Internet Explorer

J Fichier Edition Affichage Faworiz Outls 7
I e fa)
Frécédente Sumarte Airéter Actualizer Démarrage R

J Adresze @ C:AdatazergewindowsScnptingtvbzonptheszaizh coucoul htm

Cette page affiche coucou au chargement dans un navigatewr Internet Explorer

Le script exécuté était le suivant :

<sCript Tanguage="wbscript's>
'"affiche coucou
window. alert "coucou"
feCripts

Alors que le conteneur WSH mettait a disposition du script un objet appelé wseript permettant de
faire des affichages avec sa méthode echo, ici IE met a disposition du script un objet window
permettant de faire des affichages avec la méthode a/ert. Ainsi pour afficher "coucou", on écrit
wseript.echo "coucon" dans WSH et window.alert "concon” dans IE. On peut montrer ici aussi qu'en fait
on peut utiliser plusieurs langages dans le conteneur IE. Nous reprenons l'exemple déja présenté
dans WSH au sein d'une page concou3.him :

1 ehtml=

2 <head=

E <titlexcoucau<,/titlex

4

g <script Tanguage="whscript'=

& ' affiche coucou

x window,alert "coucou [vbhscriptl!

g wSECripts

a

ia <sCript Tanguage="jawascript'=

11 A4 affiche coucou

1z window.alert("coucou [jawascriptl'l;
13 S SECripts

14

15 <sCcript Tanguage="perlscript's

1& # affiche coucou

17 fwindow-=alert("coucou (perlscriptl'l;
18 < SsCcripts

1% «/s/heads

20 chody=

21 Cette page atfiche coucou trois fois au chargement dans un nawvigateur Internet Explorer
22 e Sbodys

23w html=
24

Le chargement de cette page par IE affiche tout d'abord trois fenétres d'information :

Microsoft Internet Explorer | Microzoft Internet Explorer | Microzoft Internet Explorer |

& coucou [vbacrpt] & coucou [javascript] & coucou [perlseript]

avant d'afficher la page finale :

Adresse I@ C:hdatahzergetwindowsS criptingwbacriptheszaiz coucoud. hitm

Cette page affiche coucou trods fois au chargement dans un navigateur Internet Explorer

2.6 L'aide de WSH

WSH vient avec un systeme d'aide situé habituellement dans le dossier "C:\Program
Files\Microsoft Windows Script\ScriptDocs". pour la version 5.6 de WSH, le fichier d'aide
s'appelle "SCRIPT56.CHM". 1I suffit de double-cliquer sur ce fichier pour avoir acces a l'aide. 11
peut étre pratique d'en avoir un raccourci sur son bureau.

Une fois lancé, on a quelque chose comme suit :

Sommaire |1nde:-: I Eechercherl

= [:@ Technologies de Microsoft Windows S
@ JScript
- $/E S cript
@ Exécution de script
@ Windows Script Host
@ Compozants de script
@ Windows Script Interfaces SDK

On y trouve laide du conteneur WSH mais également celle pour les langages vbscript et
javascript. C'est un outil indispensable a la fois pour le débutant et le programmeur confirmé. Il y
a plusieurs facons de travailler avec cette aide :

" on ne sait pas trop ce qu'on cherche. On veut simplement découvrir ce qui est proposé.

L'onglet Sommaire ci-dessus peut étre alors utilisé. On peut pat exemple regarder ce qui est
proposé pour vbscript :

10

= ([vBScript
= [:@ Guide de lutilizateur VB S cript
El Qu'est-ce que YBScript 7
El Ajout de code VB Script dans une page HTRL
El Caracténstiques de WBScript non incluses dans Wisual Basic pour applications
El Caracténstiques de Vizual B azic pour applications non incluzes dans VEBScript
= [ﬂ| Motions de baze surYBScript

El IIne page VB Script simple

El Caractéristigues de WBScript

El Types de données de VB Scoript

El Yariables de VEScript

El Corstantes de YBScript

El Opérateurs de VB Script

El Utilization des instructions conditionnelles

El Boucles de répétition du code

El Procédures de YBScript

El Corventions de codage

El YEScript et les feuilles

El WBScript dans Internet Explorer

El [tilization de “WEScrpt avec les objets

=] [ﬂ| |ntroduction aus expressions réguliéres

El Ewpressions réguligres

El Ure arigine laintaine

El [tilization des expressions réguliéres

El Syntawe d'une expression régulisre

El Création d'une expression réguliéne

El Ordre de priorité

El Caractéres ordinaires

El Caractéres spéciaus

El Caractéres non imprimables

El Comnespondance de caractéres

El Quantifiants

?I Ancrages

Vous découvrirez dans l'aide de VBscript de nombreuses informations qui ne sont pas dans ce
document.

" vous pouvez chercher quelque chose de précis, par exemple la fagon d'utiliser la fonction
msghox de VBscript. Utilisez alors l'onglet Rechercher :

11

Eummairel Index Bechercher I

Entrez lelz] mot(z] & rechercher :

=2
He-:beru:herl Afficher |

Sélectionnez la rubrique : Trowvée(s] : 53

Titre | Emplace... | Ha ~

b zgBox, fonction Technolo... 1
Boucles de répétiti... Technolo...
WBScrpt et les feul.. Technolo...
bzgBosx, constantes Technolo...
Ilne page YBScnp... Technolo...
Frocédures deYB... Technolo...
Référence d un au... Technolo...
tilization dez ingtr... Technolo...
Exit, ingtructiaon Technala...
Création des infor... Technolo.. 10
Replace, méthode Technolo.. 11
Elément <registrati.. Technolo.. 12
WBScrpt, constant... Technolo.. 13
Iritialize, événement Technolo.. 14

L'aide rameéne toutes les rubriques qui ont un rapport avec le mot recherché. En général, les
premicres rubriques proposées sont les plus pertinentes. C'est le cas ici ou la premiére rubrique
proposée est la bonne. Il suffit de double-cliquer dessus pour avoir l'information de cette
rubrique :

[#] Vizual Basic Scripting Edition
EEPTEYY, fonction

Affiche un message dans une boite de dialague, attend que l'utilisateur clique sur un bouton et renvaie une valeur indiquant le bouton choisi par
I'utilisateur,

T proeme(, Duteans]{, tiele}{, helpfils, comeexe])

Arguments

prompt
Expression de chaine qui est affichée sous la farme d'un message dans la boite de dialogue. La longueur masimum de 'argument prompt est
anviron 1024 caractéres, selon la largeur des caractéres utilisés, Sil'argument prompt se compose de plusisurs lignes, vous pouvez les
séparer en utilisant un caractére de retour chariot (Chr{13)), un caractére de retour 4 |a ligne (Chr{10)) ou une combinaison de ces deun
caractéres [Chr{13) & che10]).

12

3 Les bases de la programmation VBSCRIPT

Apres avoir décrit les contextes d'exécution possibles pour un script vbscript, nous abordons
maintenant le langage lui-méme. Dans toute la suite, nous nous plagons dans les conditions
suivantes :

1. le conteneur du script est WSH

2. le script est placé dans un fichier de suffixe .vbs

Pour présenter un concept, nous opérons en général de la fagcon suivante :
* on introduit le concept si besoin est
" on présente un programme d'illustration avec ses résultats
* on commente les résultats et le programme si besoin est

Les conteneurs vbscript ne sont pas sensibles a la "casse" utilisée (majuscules/minuscules) dans le
texte du script. Aussi pourra-t-on écrire indifféremment wseript.echo "concon’ ou WSCRIPT.ECHO
" "

concon”.

Les programmes présentés dans la suite font beaucoup d'écritures a I'écran aussi allons-nous
présenter de nouveau les méthodes d'écriture de I'objet wscript.

3.1 Afficher des informations

Nous avons déja utilisé la méthode echo de I'objet wseript mais ce dernier a d'autres méthodes
permettant d'écrire a I'écran comme le montre le script suivant :

| Programme Résultats
" affichages o U0
wscript.echo "un" 2. deuxtrois
wsCript.stdout.write “"deux" 3. quatre
4. cinq

wsCcript.stdout.write "guatre" & whCRLF

1
2
2
4 wsCript.stdout.write "trois" & chr(12) & chrilo)
E
& wsCript.stdout.writeLine "cing”

¥

On notera les points suivants :

* Toute texte placé aprés une apostrophe est considéré comme un commentaire du script et
n'est pas interprété par WSH (ligne 1).

* la méthode echo écrit ses arguments et passe a la ligne suivante de méme que la méthode
writeLine (lignes 2 et 6)

* la méthode write écrit ses arguments et ne passe pas a la ligne suivante (ligne 3)

* une marque de fin de ligne est représentée par la suite de deux caracteres de codes ASCII
13 et 10. Ainsi ligne 4 est-elle représentée par 'expression chr(13) & chr(10) ou chr(i) est
le caractere de code ASCII i et & 'opérateur de concaténation de chalne. Ainsi "chat" &
"eau" est la chaine "chateau".

* la marque de fin de ligne peut étre représentée plus facilement par la constante vbCRLF

(ligne 5)

3.2 Ecriture des instructions dans un script Vbscript

Par défaut, on écrit une instruction par ligne. Néanmoins, on peut écrire plusieurs instructions
par ligne en les séparant par le caractere : comme dans zzst]:nst2:nst3. St une ligne est trop
longue, on peut la découper en morceaux. Il faut alors que les différentes parties de l'instruction
solent terminées par les deux caracteres (espace)_. Nous reprenons l'exemple précédent en
réécrivant différemment les instructions :

http://tahe.developpez.com 13

Programme Résultats

aftfichages
wsCript.echo "un"

LT T Y

wsCcript.stdout.write "deux" 2

wscript.stdout.write "trois" _ 3. quatre
& chri13) & chri(lo) 4

wsCript.stdout.write "guatre" & wbIRLF @ wscript.stdout.writeLine "cing"”

1. un
. deuxtrois

. cing

3.3 Ecrire avec la fonction msgBox

Si dans ce document, nous utilisons quasi exclusivement l'objet wseript pour écrire a 1'écran, il
existe une fonction plus sophistiquée pour afficher des informations dans une fenétre cette fois-
ci. C'est la fonction msgbox qui s'utilise en général avec trois parametres :

msgbox message, icones+boutons, titre
" message est le texte du message a afficher
" iconestboutons (facultatif) est en fait un nombre qui indique le type d'icone et les
boutons a placer dans la fenétre du message. Ce nombre est le plus souvent la somme de
deux nombres : le premier détermine 1'icone, le second les boutons
" titre est le texte a placer dans la barre de titre de la fenétre de message

Les valeurs a utiliser pour préciser l'icone et les boutons de la fenétre d'affichage sont les

suivantes :

Constante Valeur Description
vbOKOnly 0 Affiche uniquement le bouton OK.
vbOKCancel 1 Affiche les boutons OK et Annuler.
vbAbortRetrylgnore 2 Affiche les boutons Abandon, Réessayer et Ignorer.
vbYesNoCancel 3 Affiche les boutons Oui, Non et Annuler.
vbYesNo 4 Affiche les boutons Oui et Non.
vbRetryCancel 5 Affiche les boutons Réessayer et Annuler.
vbCritical 16 Affiche l'icone Message critique.
vbQuestion 32 Affiche l'icone Demande d'avertissement.
vbExclamation 48 Affiche l'icone Message d'avertissement.
vbInformation 64 Affiche l'icone Message d'information.
vbDefaultButton1 0 Le premier bouton est le bouton par défaut.
vbDefaultButton2 256 Le deuxiéme bouton est le bouton par défaut.
vbDefaultButton3 512 Le troisieme bouton est le bouton par défaut.
vbDefaultButton4 768 Le quatrieme bouton est le bouton par défaut.
vbApplicationModal 0 Application modale ; l'utilisateur doit répondre au message

avant de continuer 2 travailler dans l'application courante.

vbSystemModal 4096 Systéme modal ; toutes les applications sont suspendues

Voici des exemples :

jusqu'a ce que l'utilisateur réponde au message.

Programme

http://tahe.developpez.com

14

1" msgbos=
2

Zmsghox "Meszage 1"
4msgbox "Message 2,
S msgbox ""Message 3",

& msghox "Message
7msgbox '"Message
Zmsghox ""Message

,"Mon titre"
vhInfaormation,"Une informatian”

4" whExclamation,"attentian "
£, wbcritical,"une erreur"
&', vbQuestion,"Une guestian”

Imsgbox "woulez-wous continuer 2V, _
10 whuestion+vbyesNo, "Une guestion”
1lmsghox "wvoulez-wvous sauvegarder le fichier awvant de quitter 1'application 2, _
12 wbQuestiont+vbyesHoCancel,"Sauvegarde"

1z

Résultats

YBScnpt]

Mezzage 1

Une erreur Eq | Une question B2

Q beszage 5

@ Woulez-vous zauvegarder le fichier avant de quitter l'application ?

Sauvegarde

b 2
R @ kezzage 3

Une information [E3 |

@ tezzage B

Une question

@ Youlez-vous continuer ?

& tezzage 4

Man | Annuler |

Dans certains cas, on présente une fenétre d'information qui est également une fenétre de saisie.
Si on pose une question, on veut par exemple savoir si 'utilisateur a cliqué sur le bouton ox# ou
sur le bouton non. La fonction msgBox rend un résultat que dans le programme précédent nous
n'avons pas utilisé. Ce résultat est un nombre entier représentant le bouton utilisé par l'utilisateur
pour fermer la fenétre d'affichage :

Constante Valeur

vbOK
vbCancel
vbAbort
vbRetry
vblgnore
vbYes
vbNo

1

~N &N U B~ WD

OK

Bouton choisi

Annuler
Abandon
Réessayer

Ignorer

Oui
Non

Le programme suivant montre l'utilisation du résultat de la fonction msgBox. On présente 4 fois
une fenétre avec les boutons oui, non, annuler. On répond de la facon suivante :
1. on clique sur oui

on clique sur non

2.

3. on clique sur annuler

4. on ferme la fenétre sans utiliser de bouton. Le programme montre que cela revient a
utiliser le bouton Annuler.

http://tahe.developpez.com

15

Programme

1' msgbox
2

2 reponse=msghox('""voul ez—vous
4msgbox "oui=" & reponse

5 reponse=tmsghox ["voul ez-vous
&msgbox "non=" & reponse

7 reponse=ns ghox ["voul ez-vous
Zmsgbox "annuler=" & reponse
S reponse=tnsghox ["voul ez-vous
lo0msghox " fermerE" & reponse

continuer
continuer
continuer

continuer

7"y wbues tion+wbyesMoZancel,
" wbQues tion+vbvyesMaCancel,
" wbQuestion+vbyesWaCancel,

7" wbQues tion+vbvyesMoCancel,

"Une question"]

"Une question™)
"Une question™)

"Une question™)

Résultats

YBScnpt]

oui=h

YBScnpt]

noh=1

VBS cript B2

annuler=2

YBScnpt

fermer=2

3.4 Les données utilisables en Vbscript

VBscript ne connait qu'un type de données :

le variant. La valeur d'un variant peut étre un

nombre (4, 10.2), une chaine de caracteres ("bonjout"), un booléen (true/false), une date
(#01/01/2002#), l'adresse d'un objet, un ensemble de toutes ces données placées dans une
structure appelée tableau.

Examinons le programme suivant et ses résultats :

Programme

Résultats |

http://tahe.developpez.com

16

1" wariables . . 4
2" on n'est pas aobligé de déclarer Tes wariables que Te script utilis i=4
3
4

10,2

' entiers ri=10,2
t =4 0,014
cwscript.echo i r2=0,014
Fwscript.echo "i=" & i cl=bonjour
& 01/10/02
2 des réels d1-01/10/02
10 r1=10.z2 10/01/02
llwscript.echo rl d2=10/01/02
liwscript.echo "rl=" & rl -1
13 p2=1.4e-2 bl=Vrai
l4wscript.echa rz 0
18 wsCcript.echo "rz=" & rz b2=Faux
16 v=4
17 ' chaines de caractéres v=10,2
18 ci="honjour" v=bonjour
1%wscript.echo "cl=" & c1 v=01/10/02
20 v=Vrai

21 ' une date 10 janv 2002

22 dl=#10,/01/2002#

2iwscript.echo di

Zdwscript.echo "di=" & di

25" c'était en fait Te 1er oct zooz, la forme des dates wvhscript étant
26 dz=#01,/10/2002#

Ziwscript.echo dz

2Ewscript.echo "dz=" & dz2

29
20 booléens
21 bl=true

Jiwscript.echo bl

F2wscript.echo "bl=" & bl

24 bz=Tfalse

FEwscript.echo bz

Jewscript.echo "bz=" & bz

37

&' une wariable v peut changer de type de waleur au cours du temps
25 =

dd0wscript.echo "w="" & w
41 w=r1l
dZwsCcript.echo "w="" & w
43 w=rcl
ddwscript.echo "w=" & w
45 w=d1
dewscript.echo "w=" & w
47 w=hl

M= g

dEwsCcript.echo
49

EO' fin
Slwscript.quit o0
2

Commentaires :

" un certain nombre de langages de programmation (C, C++, Pascal, Java, C#, ...) exigent
la déclaration préalable d'une variable avant son utilisation. Cette déclaration consiste a
indiquer le nom de la variable et le type de données elle peut contenir (entier, réel, chaine,

date, booléen, ...). La déclaration des variables permet différentes choses :

o connaitre la place mémoire nécessaire a la variable si différents types de données

nécessitent différents espaces mémoire

o de vérifier la cohérence du programme. Ainsi si 7 est un entier et ¢ une chaine de

caracteres, multiplier 7 par ¢ n'a aucun sens. Si le type des variables 7 et ¢ a été
déclaré par le programmeur, le programme chargé d'analyser le programme avant

son exécution peut signaler une telle incohérence.

Comme la plupart des langages de script a type de données unique (Perl, Python,
Javascript, ...) Vbscript autorise de ne pas déclarer les variables. C'est ce qui a été fait dans

l'exemple ci-dessus.

" notons la syntaxe de différentes données

o 10.2 en ligne 10 (point décimal et non virgule). On notera qu'a I'affichage c'est

10,2 qui est affiché.

o 1.4e-2 en ligne 13 (notation scientifique). A l'affichage, c'est le nombre 0,014 qui a

http://tahe.developpez.com

17

été affiché

o [#01/10/2002#] (ligne 26) pour représenter la date du 10 janvier 2002. C'est
donc le format #mm/jj/aaaa# que vbscript utilise pour représenter la date 7/ du
mois 7 de 'année aaaa

o les booléens true et false (vrai/faux) en lignes 31 et 34. Ces deux valeurs sont
représentées respectivement par les entiers -1 et 0 comme le montre 'affichage
des lignes 32 et 35. Lorsqu'un booléen est concaténé a une chaine de caracteres,
ces valeurs deviennent respectivement les chaines "Vrai" et "Faux" comme le
montrent les lignes 33 et 36. On remarquera au passage que l'opérateur & de
concaténation peut servir a concaténer autre chose que des chaines.

" une variable v n'ayant pas de type assigné, elle peut accueillir successivement dans le
temps des valeurs de différents types.

3.5 Les sous-types du type variant

Voici que dit la documentation officielle sur les différents types de données que peut contenir un
variant :

Au-dela de la simple distinction nombre/chaine, un Variant peut distinguer différents types
d'information numérique. Par exemple, certaines informations numériques représentent une
date ou une heure. Lorsque ces informations sont utilisées avec d'autres données de date ou
d'heure, le résultat est toujours exprimé sous la forme d'une date ou d'une heure. Vous
disposez aussi d'autres types d'information numérique, des valeurs booléennes jusqu'aux
grands nombres a virgule flottante. Ces différentes catégories d'information qui peuvent étre
contenues dans un Variant sont des sous-types. Dans la plupart des cas, vous placez
simplement vos données dans un Variant et celui-ci se comporte de la fagon la plus
appropriée en fonction de ces données.

Le tableau suivant présente différents sous-types susceptibles d'étre contenus dans un
Variant.

Sous-type Description
Empty Le Variant n'est pas initialisé. Sa valeur est égale a zéro pour les variables
numériques et a une chaine de longueur nulle ("") pour les variables chaine.
Null Le Variant contient intentionnellement des données incorrectes.
Boolean Contient True (vrai) ou False (faux).
Byte Contient un entier de 0 a 255.
Integer Contient un entier de -32 768 a 32 767.
Currency -922 337 203 685 477,5808 a 922 337 203 685 477,5807.
Long Contient un entier de -2 147 483 648 a 2 147 483 647.
Single Contient un nombre a virgule flottante en précision simple de -3,402823E38 a

-1,401298E-45 pour les valeurs négatives ; de 1,401298E-45 a 3,402823E38 pour
les valeurs positives.

Double Contient un nombre a virgule flottante en précision double de
-1,79769313486232E308 a -4,94065645841247E-324 pour les valeurs négatives ;
de 4,94065645841247E-324 a4 1,79769313486232E308 pour les valeurs positives.

Date (Time) |Contient un nombre qui représente une date entre le ler janvier 100 et le 31
décembre 9999.

http://tahe.developpez.com 18

../../../../st-2020/st-2020/cours/vbscript/vskeyfalse.htm
../../../../st-2020/st-2020/cours/vbscript/vskeytrue.htm

String Contient une chaine de longueur variable limitée a environ 2 milliards de

caractéres.
Object Contient un objet.
Error Contient un numéro d'erreut.

3.6 Connaitre le type exact de la donnée contenue dans un variant

Une variable de type variant peut contenir des données de divers types. Il nous faut quelquefois
connaitre la nature exacte de ces données. Si dans un programme nous écrivons
produit=nombrel *nombre2, nous supposons que nombrel et nombre2 sont deux données numériques.
Parfois nous n'en sommes pas surs car ces valeurs peuvent provenir d'une saisie au clavier, d'un
fichier, d'une source extérieure quelconque. Il nous faut alors vérifier la nature des données
placées dans nombrel et nombre2. La fonction typename(var) nous permet de connaitre le type de
données contenue dans la variable zzr. Voici des exemples :

| Programme Résultats |
' types var=1,type=Integer
' par la suite, war est un wariant qui prend différentes . var=deux,type=String
var=Vrai,type=Boolean
' entier var=4,5,type=Double
wakr=1 var=11/10/01,type=Date

wsCript.echo "war=" & war & ", type=" &L typenamewvar)

chaine de caractéres
war="deyux"
10 wscript.echo "war=" & war & ", tCype=" & typename(war)

WO] W R T

1z ' haooléen
13 war=true
14 wscript.echo "war=" & war & ", type=" &L typenamewar)

16 ' réel
17 war=4.g
1% wscript.echo "war=" & war & ", tCype=" & typename(war)

20 ' date
21 wars#10/11,/2 0014
22 wscript.echo "war=" & war & ", type=" &L typenamewvar)

Une autre fonction possible est vartype(var) qui rend un nombre représentant le type de la donnée
contenue par la variable var:

Constante | Valeur Description
vbEmpty 0 Empty (non initialisée)
vbNull 1 Null (aucune donnée valide)
vbInteger 2 Entier
vbLong 3 Entier long
vbSingle 4 Nombre en virgule flottante en simple précision
vbDouble 5 Nombre en virgule flottante en double précision
vbCurrency |6 Monétaire
vbDate 7 Date
vbString 8 Chaine
vbObject 9 Objet Automation
vbError 10 Erreur

http://tahe.developpez.com 19

vbBoolean |11 Booléen

vbVariant 12 Variant (utilisé seulement avec des tableaux de
Variants)

vbDataObjec | 13 Objet non Automation

t

vbByte 17 Octet

vbArray 8192 Tableau

Remarque Ces constantes sont spécifiées par VBScript. En conséquence, les noms peuvent
étre utilisés n'importe ou dans votre code a la place des valeurs réelles.

Les informations ci-dessus proviennent de la documentation de VBscript. Celle-ci est parfois
incorrecte, issue probablement de copier-coller faits a partir de la documentation de VB. La
fonction vartype de VBScript ne fait qu'une partie de ce qui est annoncé ci-dessus.

Le programme précédent, réécrit pour zartype donne les résultats suivants :

| Programme Résultats
1" types var=1, type=2
' par la suite, war est un wariant qui prend différentes waleurs var=deux, type=8
2 var=Vrai,type=11
4 ' entier var=4,5,type=5
Eowar=1 var=11/10/01,type=7
& wscript.echo "wvar=" & war & ', type=" & wvartype(war)
T
&' chajne de caractéres
2 war="deux"

10 wscript.echo "war=" & wvar & ", type=" & wvartype(war)

11

12 ' booléen
13 war=true
14 wscript.echo "war=" & wvar & ", type=

& wartype(war)

1 ' réel
17 war=4.,5
1% wscript.echo "war=" & war & ", type=

& wartype(war)

20 ' date
21 war=#10,/11/2001#
22 wscript.echo "war=" & wvar & ", type=

& wartype(war)

3.7 Déclarer les variables utilisées par le script

Nous avons indiqué qu'il n'était pas obligatoire de déclarer les variables utilisées par le script.
Dans ce cas, si nous écrivons :

1) somme=4

2) somme=smme+10

avec une faute de frappe smme au lieu de somme dans l'instruction 2, vbscript ne signalera
aucune erreur. Il supposera que smme est une nouvelle variable. Il la créera et dans le
contexte de l'instruction 2 'utilisera en l'initialisant a 0.

Ce genre d'erreurs peut étre tres difficile a retrouver. Aussi est-il conseillé de forcer la
déclaration des variables avec la directive option explicit placée en début de script. Ensuite
toute variable doit étre déclarée avec une instruction dim avant sa premicre utilisation :

1. option explicit

http://tahe.developpez.com 20

. dim somme
. 1) somme=4

aouhwnN

. 2) somme=smme+10

Dans cet exemple, vbscript indiquera qu'il y a une variable non déclarée smme en 2)
comme le montre l'exemple qui suit :

Programme Résultats

dim

7 0im somme
& & omrme=4|

diml.vbs(9, 1) Erreur d'exécution Microsoft

1

2

] on force la déclaration des wariables VBScript: Variable non définie: 'smme'
40ption Explicit
5

)

gqqs instruction

2 samme=shme+10

Si dans les courts exemples du document, les variables ne sont la plupart du temps pas
déclarées, nous forcerons leur déclaration deés que nous écrirons les premiers scripts
significatifs. La directive Option explicit sera alors utilisée systématiquement.

3.8 Les fonctions de conversion

Vbscript transforme les données des variants en chaines, nombres, booléens, ... selon le contexte.
La plupart du temps, cela fonctionne bien mais parfois cela donne quelques surprises comme
nous le verrons ultérieurement. On peut alors vouloir "forcer" le type de donnée du variant.
VBscript possede des fonctions de conversion qui transforment une expression en divers types
de données. En voici quelques unes :

Cint (expression)

Clng (expression)
Cdbl (expression)
Csng (expression)

Ccur (expression)

transforme expression en entier court (integer)
transforme expression en entier long (long)
transforme expression en réel double (double)
transforme expression en réel simple (single)

transforme expression en donnée monétaire (currency)

Voici quelques exemples :

Programme

http://tahe.developpez.com

21

CONwersions
oim war

' conwversions classiques

1
2
3
E
5
&
7' chaine --= integer

Zoar=""4"

Swscript.echo "war=" & war & ",code type=" & wvartype(var) & ",nom Cype=" & typenamewar)
Lo wvar=cintivar)

llwscript.echo "wvar=" & war & ",code type=" & wvartype(wvarl & ",nom type=" & Typenamewar)
12

13 ' chaine --= Tlang

14 war="1000000"

18 wscript.echo "war=" & war & ",code type=" & wvartype(war) & ",nom type=" & Typenamewar)
lé wvar=clngiwvar)

17wscript.echo "war=" & war & ",code type=" & wvartype(war) & ",nom type=" & Typenamewar)
1%

13 ' chaine --= double

20war="3,4g-g"

2lwscript.echo "war=" & war & ",code type=" & wartype(war)] & ",nom type=" & Typenamewar)
22 war=cdhbl (wvar)

2iwscript.echo "war=" & war & ",code type=" & wartype(war)] & ",nom type=" & Typenamewar)
24

25 ' chaine --= single

Zieyar="3,4g-g"

Ziwscript.echo "wvar=" & war & ",code type=" & wartype(war)] & ",nom type=" & Typename(war)
28 war=csngiwvar)

28wscript.echo "war=" & war & ",code type=" & wvartype(warl] & ",nom type=" & Typenamewar)
20

31 ' chaine --= CUrrency

22 war="1000, 45"

Ziwscript.echo "war=" & war & ",code type=" & wartype(varl & '",nom type=" & typenamewvar)
24 var=sccurivar)

32w5cr‘1pt.echu "war=" & war & ",code type=" & wvartype(var) & ",nom Cype=" & typenamewar)
37 ' nombre guelcaongue —--»= chaine

38 war=14

I9wscript.echo "wvar=" & war & ",code type=" & wvartype(war) & '",nom type=" & Typenamewar)
40 war="" & wvar

4lwscript.echo "war=" & war & ",code type=" & wvartype(war) & ",nom type=" & Typenamewar)
42

43 ' double --= dinteger

44 war=1000, 45

4Ewscript.echo "war=" & war & ",code type=" & wvartype(war) & '",nom type=" & typenamewar)
46 wvar=cintiivar)

47 wscript.echo "war=" & war & ",code type=" & wartype(war)] & ",nom type=" & Typenamewar)
45

49 war=1000.75|

SOwscript.echo "war=" & war & ",code type=" & wartype(war)] & ",nom type=" & Typenamewar)
51 war=cintiiwvar)

Siwscript.echo "war=" & war & ",code type=" & wartype(war)] & ",nom type=" & Typename(war)
53

Résultats

. var=4,code type=8,nom type=String

. var=4,code type=2,nom type=Integer

. var=1000000, code type=8,nom type=String

. var=1000000, code type=3,nom type=Long

. var=3,4e-5,code type=8,nom type=String

. var=0,000034,code type=5,nom type=Double
. var=3,4e-5,code type=8,nom type=String

. var=0,000034,code type=4,nom type=Single
. var=1000,45, code type=8,nom type=String
10. var=1000,45,code type=6,nom type=Currency
11. var=14,code type=2,nom type=Integer

12. var=14,code type=8,nom type=String

13. var=1000,45,code type=5,nom type=Double
14. var=1000,code type=2,nom type=Integer
15. var=1000,75,code type=5,nom type=Double
16. var=1001,code type=2,nom type=Integer

VWCoONOOUVUDAWNER

3.9 Lire des données tapées au clavier

L'objet wscript permet a un script de récupérer des données tapées au clavier. La méthode
wseript.stdin.readline permet de lire une ligne de texte tapée au clavier et validée par la touche
"Entrée". Cette ligne lue peut étre affectée a une variable.

| Programme Résultats
1|' lectures clavier 1. Tapgz votre nom : st
ZwsCcript.stdout.write "Tapez wotre nom @ " 2. Bonjour st

Znam=wscript.stdin.readline
dwscript.stdout.writeline "Bonjour ' & nom
g

http://tahe.developpez.com 22

Commentaires :

* Dans la colonne des résultats et dans la ligne [Tapez votre nom
par l'utilisateur.

st], stest la ligne tapée

Si le texte tapé au clavier représente un nombre, il est quand méme considéré avant tout comme
une chaine de caracteres comme le montre l'exemple ci-dessous :

Résultats

1. Tapez un nombre : 14
2. nombre lu=14,type=String

| Programme
I 7" Tectures clawvier
ZwsCcript.stdout.write "Tapez un nombre
2 nambre=wscript.stdin.readlLine
dwscript.stdout.writeLine "nombre Tu="
& Y, type=" & typenamenombre)

& nombre _

5
&
7

Si ce nombre intervient dans une opération arithmétique, VBscript fera automatiquement la
conversion de la chaine vers un nombre mais pas toujours. Regardons I'exemple qui suit :

| Programme Résultats |
1' Tire deu< nombres tapés au clawvier 1. nombrel : 3
ZwsCript.stdout.write "nombrel @ " 2. nombre2 : 4
Z nombrel=wscript.stdin.readlLine 3. 3+4=34
dwscript.stdout.write "nombrez @0 " 4. 3-4=-1
5 nombrez=wscript.stdin.readlLine 5. 3x4=12
& 6. 3/4=0,75

S calculs

Z s omme=nombrel+nombrez

2 diff=nombrel-nombrez
10 produi t=nombrel*nombrez
11 quotient=nombrel/nombrez

1z

12 ' Acrire Tes résultats & 1'écran

l4wscript.echo nombrel & "+" & nombrez & "=" & somme
1Swscript.echo nombrel & "-" & nombrez & & diff
leéwscript.echo nombrel & "=" & nowbrez & & produit
17wscript.echo nombrel & "/ & nombrez & "=" & quotient
157

Dans les résultats, on voit que la ligne 8 du script ne s'est pas déroulée comme attendu, ceci parce
que (malheureusement) en vbscript l'opérateur + a deux significations : addition de deux
nombres ou concaténation de deux chaines (les deux chalnes sont collées I'une a l'autre). Nous
avons vu précédemment que les nombres tapés au clavier étaient lus comme étant des chaines de
caracteres et que vbscript transformait celles-ci en nombres selon les besoins. 11 1'a correctement
fait pour les opérations -,*,/ qui ne peuvent faire intervenir que des nombres mais pas pour
l'opérateur + qui lui peut également faire intervenir des chaines. Il a supposé ici qu'on voulait
faire une concaténation de chaines.

Une solution simple a ce probleme est de transformer en nombres les chaines deés leur lecture
comme le montre l'amélioration qui suit du programme précédent :

| Programme Résultats

http://tahe.developpez.com 23

1" Tire deux nombres tapes au clavier 1. nombrel : 3

g ' hombrel 2. nombrel=3,type=String
dwscript.stdout.write "nombrel : ¢ 3. nombrel=3,type=Long

S nombrel=wscript.stdin.readline 4. nombre2 : 4
cwscript.echo "nombrel=" & naowmbrel & ", type="" & typename(naombrell) 5. nombre2=4,type=String
7 nombrel=clngnombrel) . ’
Swscript.echo "nombrel=" & nombrel & ", type=" & Typename(nombrel) 6. nombre2=4,type=Long

9 7. 3+4=7

10" nombrez 8. 3-4=-1
Ilwscript.stdout.write "nombrez @ " 9. 3x4=12

12 nombrez=wscript.stdin.readline o SNEE

12wscript.echo "nombrez=" & nombrez & ", type=" & typenams(nombrez) 10. 3/4=0,75

14 nombrez=clngnombrez’

1S8wscript.echo "nombrez=" & nombrez & ", type=" & typenamelnombrez]
16

17 ' calculs

1% sonme=nombrel+nombre:z

1% di ff=nombrel-nombrez

20 produi t=nombrel+*nombrez

21 quotient=nombrel/ nombrez

22

23 ' &crire les résultats & 1'écran

Z4wscript.echo nombrel & "+'" & nombrez 5 OITme
Z2Ewscript.echo nombrel & "-" & nombrez diff
Zewscript.echo nombrel & "x'" & nombrez produit
27 wsCcript.echo nombrel & "/ & nombrez quotient

28

3.10 Saisir des données avec la fonction inputbox

On peut vouloir saisir des données dans une interface graphique plutot qu'au clavier. On utilise
alors la fonction mputBox. Celle-ci admet de nombreux parametres dont seuls les deux premiers
sont fréquemment utilisés :

reponse=inputBox(message,titre)

" message : la question que vous posez a l'utilisateur

» titre (facultatif) : le titre que vous donnez a la fenétre de saisie

" reponse : le texte tapé par l'utilisateur. Si celui-ci a fermé la fenétre sans répondre,
reponse est la chaine vide.

Voici un exemple ou on demande le nom et I'age d'une personne. Pour le nom on donne une
information et on fait OK. Pour l'age, on donne également une information mais on fait Annuler.

| Programme

1" inputbo=
2

I nom=i nputBox (" Tapez wotre nom',"Identité'")
4msgbox "Wotre nom est [Y & nom & "]

t age=inputBox("Tapez wotre age","Identité")
emsghox "wotre age est [" & age & "]"

T’

Résultats

T apez watre nom “atre nom est [dupont]

Annuler

i

dupant

http://tahe.developpez.com 24

Tapez votre &ge
%nuler |

Watre age est []

4

3.11 Utiliser des objets structurés

11 est possible de créer avec vbscript des objets ayant des méthodes et des propriétés. Pour ne pas
compliquer les choses, nous allons présenter ici un objet avec des propriétés et pas de méthodes.
Considérons une personne. Elle a de nombreuses propriétés qui la caractérisent : taille, poids,
couleur de peau, des yeux, des cheveux, ... Nous n'en retiendrons que deux : son nom et son age.
Avant de pouvoir utiliser des objets, il faut créer le moule qui va permettre de les fabriquer. Cela
se fait en vbscript avec une classe. La classe personne pourrait étre définie comme suit :

1. cl_ass personne
2. D1m nom,age
3. End class

C'est l'instruction [Dim nom,age] qui définit les deux propriétés de la classe personne. Pour créer des
exemplaires (on parle d'instances) de la classe personne, on écrit

1. set personnel=new personne
2. set personne2=new personne

Pourquoi ne pas écrire

1. personnel=new personne
2. personne2=new personne

Parce qu'un variant ne peut contenir un objet. I peut seulement en contenir I'adresse. En écrivant
set personnel =new personne, la séquence d'événements suivante prend place :

1. un objet personne est créé. Cela veut dire que de la mémoire lui est allouée.
2. l'adresse de cet objet personne est affectée a la variable personnel

Nous avons alors le schéma mémoire suivant pour les variables personnel et personne? :

objet personne
personnel 4@

personne? »

objet personne

Par abus de langage, on pourra dire que personnel est un objet personne. On peut accepter cet abus
de langage si on se rappelle que personnel est en fait 'adresse d'un objet personne et non l'objet
personne lui-méme.

Nous avons dit qu'un objet personne avait deux propriétés nom et age. Comment exploiter ces
propriétés ? Par la notation objez.propriété comme il a été expliqué un peu plus haut. Ainsi

http://tahe.developpez.com 25

personnel .nom désigne le nom de la personne 1 et personnel.age son age. Voici un court programme

d'illustration :

| Programme Résultats

1' une classe pl=(dupont,18)
2 class personne

E Oim nam

4 Dim age

S End class

5

7' création d'un objet personne
2 Set pl=new persanne

2 pl.nom="dupont"

10 pl.age=15§

11

1z ' affichage propriétés personne pl
13wscript.echo "pl=(" & pl.nom & "," & pl.age & """
14

Le programme précédent pourrait étre modifié comme suit :

| Programme Résultats
1' une classe
2 Class personne nom=dupont
2 D0im nom age=18
4 Dim age
S5 End class

7' ocréation d'un objet personne
S Set pl=new personne

Iwith pl

10 ham="dupant"

11 .age=1%5

12 End with

13
14 ' affichage propriétés persanne pil
15 with pl

le wscript.echo "noam=" & .\nom
17 wscript.echo "age=" & .age
12 End with

13

Nous avons utilisé ici la structure with ... end with qui permet de "factoriser” des noms d'objets
dans des expressions. La structure with pi ... end with des lignes 9-12 et 15-18 permet d'utiliser
ensuite la syntaxe .zom en lieu et place de pl.mom et .age en lieu et place de p7.age. Cela permet

d'alléger l'écriture des instructions ou le méme nom d'objet est utilisée de facon répétée.

3.12 Affecter une valeur a une variable

Il'y a deux instructions pour affecter une valeur a une variable :

1. variable=expression
2. set variable=expression

La forme 2 est réservée aux expressions dont le résultat est une référence d'objet. Pour tous les
autres types d'expressions c'est la forme 1 qui convient. La différence entre les deux formes est la

suivante :

1. dans l'instruction variable=expression, variable recoit une valeur. Si vl et v2 sont deux
variables, écrire v1=v2 affecte la valeur de v1 a v2. On a donc la duplication d'une valeur
a deux endroits différents. Si par la suite, la valeur de v2 est modifiée, celle de v1 ne l'est

en rien.

http://tahe.developpez.com

26

vl=v2

he [p——

2. dans l'instruction set variable=expression, variable recoit comme valeur 'adresse d'un objet.
Si vl et v2 sont deux variables et si v2 est 'adresse d'un objet obj2, écrire set v1=v2
affecte la valeur de v1 a v2, donc l'adresse de l'objet obj2. Lorsque le script manipule
ensuite v1 et v2, ce ne sont pas les "valeurs" de v1 et v2 qui sont manipulées mais bien les
objets "pointés" par vl et v2, donc le méme objet ici. On dit que vl et v2 sont deux
références au méme objet et manipuler ce dernier via vl ou v2 ne fait aucune différence.
Dit autrement, modifier I'objet référencé par v2 modifie celui référencé par v1.

vl

v2

set vli=v2

Voici un exemple :

| Programme Résultats
1 ' affectation d'une waleur & une wariable 1. i=4
2 =4 2. j=4
3= 3. i=4
dwscript.echo "i=" & 1 4. j=5
Swscript.echa "j=" & j 5. pl.nom=dupont
&' on modifie j - aucune influence sur i 6. pl.age=18
7 i=j+1 7. pl.nom=dupont
Zwscript.echo "i=" & 1 8. pl.age=19
Swscript.echo "ji=" & j 9. p2.nom=dupont
10 10. p2.age=19

11 ' définition d'une classe personne

12 class personne

L2 Dim nom, age

14 End class

1&5

16 ' création d'un e 1ler ohjet personne

17 Set pl=new personne

12 pl.nom="dupont"

1% pl,age=1g

d0wscript.echo "pl.nom=" & pl.nom

clwscript.echo "pl.age=" & pl.age

22 ' pz wa référencer le méme ohjet que pl et le modifier

23 5et pz=pl

24 pz.age=139

25 ' les deux références pl et pz doiwent waoir Tes mémes modifications
ewscript.echo "pl.nom=" & pl.nom

fwscript.echo "pl.age=" & pl.age

28wscript.echo . & p2.nom

ciwscript.echo "pz.age=" & pz.age I
30

3.13 Evaluer des expressions

Les principaux opérateurs permettant d'évaluer des expressions sont les suivantes :

Type Opérateur Exemple
d'opérateurs s

Arithmétique +,-%,/

http://tahe.developpez.com 27

Comparaison

Logique

Concaténation

mod

1s

and, or, not,
X0t

&, +

a mod b donne le reste de la division entiere de a par b. Auparavant
a et b ont été transformés en entiers si besoin était.

a \ bdonne le quotient de la division entiére de a par b. Auparavant
a et b ont été transformés en entiers si besoin était.

a"b éléve a 2 la puissance b. Ainsi a2 est égal 2 2>

a<>p est vrai si a est différent de b
a=bestvraisiaestégalab

a et b peuvent étre tous deux des nombres ou tous deux des
chaines de caractéres. Dans ce dernier cas, chainel<chaine2 si dans
l'ordre alphabétique chainel précéde chaine2. Dans la comparaison
de chaines, les majuscules précédent les minuscules dans l'ordre
alphabétique.

oby1 is obj2 est vrai si objl et obj2 sont des références sur le méme
objet.

Les opérandes sont tous ici booléens.

bool1 or bool2 est vrai si booll ou bool2 est vrai

bool1 and bool2 est vrai si booll et bool2 sont vrais

not booll est vrai si booll est faux et vice-versa

booll xor bool2 est vrai si seulement un seul des booléens booll,
bool2 est vrai

Il est déconseillé d'utiliser l'opérateur + pour concaténer deux
chaines a cause de la confusion possible avec l'addition de deux
nombres. On utilisera donc exclusivement l'opérateur &.

3.14 Controler I'exécution du programme

3.14.1 Exécuter des actions de fagon conditionnelle

L'instruction vbsctipt permettant de faire des actions selon la valeur vraie/fausse d'une condition

est la suivante :

if expression then

action-vrai-1
action-vrai-2

else
action-faux-1
action-faux-2

end if

L'expression expression est tout d'abord évaluée. Cette expression doit
avoir une valeur booléenne. Si elle a la valeur vrai, les actions du #hen sont
exécutées sinon ce sont celles du e/se s'il est présent.

Suit un programme présentant différentes variantes du if-then-else :

Programme

Résultats

http://tahe.developpez.com

28

1' tests avec 1T
2

' if - then
449=

5IT i=0 Then

&
JEnd IT

g

2

"'if - then sur 1 1igne
10If i=2 Then wscript.echo i & "

llwscript.echo "i=" & 1
12

12 ' if - then - else
14 If i<10 Then

3 est plus grand que ©
3 est plus grand que 2
i=4
. 4 est plus petit que 10
i=3

b wNn R

wsCript.echo i & " est plus grand gque oO"

est plus grand que 2": i=i+1

15 wscript.echo i & " est plus petit gue 10" i=i-1

le Else

17 wscript.echo i & " est plus grand ou égal & 10" @ =i+l
12 end IT

1%wscript.echo "i=" & 1
20

Commentaires :

" en vbscript, on peut écrire zustruction] instruction2:...

- instructionn au lieu d'écrire une

instruction par ligne. C'est cette possibilité qui a été exploitée en ligne 10 par exemple.

3.14.2

Boucle a nombre d'itérations
connu

for i=idébut to ifin step ipas
actions
next

Boucle a nombre d'itérations
inconnu

do while condition
actions
loop

Exécuter des actions de fagon répétée

1. la variable i est ici appelée variable de boucle. Elle
peut porter un nom quelconque

2. 1iprend la valeur idébut

3. la valeur de i est comparée a ifin. Si i<=ifin, les
actions situées entre le for... next sont exécutées

4. iestincrémenté de la quantité ipas (i=i+ipas)

on reboucle a 'étape 3 précédente. Au bout d'un

nombre fini d'étapes, la valeur de i dépassera ifin.

L'exécution du script se poursuit avec l'instruction

qui suit le next

6. si lincrément ipas est négatif, la condition de
I'é¢tape 3 est changée. On exécute les actions du
for...next que si i>=ifin.

o

On peut sortit d'une boucle for a tout moment avec
I'instruction exit for.

1. T'expression condition est évaluée. Si elle est vraie,
les actions du while...loop sont exécutées

2. les actions exécutées ont pu modifier la valeur de
condition. On reboucle sur I'étape 1 précédente.

3. lorsque l'expression condition devient fausse, la
boucle est terminée

On peut sortir d'une boucle do while a tout moment avec
l'instruction exit do.

Le programme ci-dessous illustre ces points :

| Programme

http://tahe.developpez.com

29

1
2
3
4
5
&
7
&
a

10
11
12
1z

14 ' bhoucle while - on boucle tant gque Tla somme n'a pas dépassé une certaine waleur

1t
1a

1700 While d<=ubound(tableau) And sonme<40

' boucle for

un tableau

tableau=array(10,20,20,40)
"on fait la samme des elements de tableau

Qrme=0

5
For i=0 To ubounditableau)
on dincremente la somme
5 amme=s otme+tableau(qi

SUivwi

wsCript.echo "i=" & i & ",tableau(il=" & tableau(il & ',somme=" & soamme

Mext

= arrme=0
i=0

1s ' on incrémente la somme
1% samme=sonme+tableaui
20 osliwi

21 wscript.echo "i=" & i & ",tableau(il=" & tableau(il & '',somme=" & somme
£z ' on passe a 1'élément suiwant du tableau
23 q=1+1

24 Loap

25

2 ' sorties de boucle

27 For i= 1 To 100

28 wscript.echo "i=" & 1

2% If i=10 Then Exit Far

20 Mext

31 q=1

3200 While i<=100

23 wscpript.echo "i=" & i

#4 If i=F Then Exit Do

35 =i+l

F& Laop

e

| Résultats

i=0,tableau(i)=10, somme=10
i=1,tableau(i)=20, somme=30
i=2,tableau(i)=30, somme=60

i=3,tableau(i)=40, somme=100

i=0,tableau(i)=10, somme=10
i=1,tableau(i)=20, somme=30

[T

e e e e e e e e e e e e e e e e e
| | | | | | | (| | e {1 | S | S | D
OV A WNRPRRPEPOVONOOTUVUDWNEN

,tableau(i)=30, somme=60

Note : Dans la phase de développement d'un programme, il n'est pas rare qu'un programme
"boucle", c.a.d. qu'il ne s'arréte jamais. En général, le programme exécute une boucle dont la
condition de sortie ne peut étre vérifiée comme par exemple dans I'exemple qui suit :

' bo
i=0
Do
i=
ws
Loop
' un
i=0
Do
i=
ws
Loop

ucle infinie
while 1=1
i+l

cript.echo i

e autre du méme genre
while true

i+l
cript.echo i

http://tahe.developpez.com

30

Si on exécute le programme précédent, la premiere boucle ne s'arrétera jamais d'elle-méme. On
peut forcer son arrét en tapant CTRL-C au clavier (touche CTRL et touche C enfoncées en
méme temps).

3.14.3 Terminer I'exécution du programme

L'instruction wscript.quit n termine 'exécution du programme en renvoyant un code d'erreur
égal a n. Sous DOS, ce code d'erreur peut étre testé avec l'instruction if ERRORLEVEL n qui est
vrai si le code d'erreur renvoyé par le dernier programme exécuté est >=n. Considérons le
programme suivant et ses résultats :

1" qllustration de quit début
Zwscript.echo "début"

2" on quitte avec le cgde d'erreur 4
4wscript.quit 4

5 oCette jnstruction né sera jamais exeécutés
cwscript.echo "fin"

Juste apres l'exécution du programme, on émet les trois commandes DOS suivantes :
. C:\>if ERRORLEVEL 5 echo 5

. C:\>if ERRORLEVEL 4 echo 4
.4

. C: >if ERRORLEVEL 3 echo 3
.3

NOUVUA WNERE

La commande DOS 1 teste si le code d'erreur retourné par le programme est >=5. Si oui, elle
affiche (echo) 5 sinon rien.

La commande DOS 2 teste si le code d'erreur retourné par le programme est >=4. Si oui, elle
affiche 4 sinon rien.

La commande DOS 3 teste si le code d'erreur retourné par le programme est >=3. Si oui, elle
affiche 3 sinon rien.

Des résultats affichés, on peut déduire que le code d'erreur retourné par le programme était 4.

3.15 Les tableaux de données dans un variant

Un variant T peut contenir une liste de valeurs. On dit alors que c'est un tableau. Un tableau T
possede diverses propriétés :

" on aacces a I'élément i du tableau T par la syntaxe T(i) ou i est un entier appelé indice
entre 0 et n-1 si T a n éléments.

" on peut connaitre l'indice du dernier élément du tableau T avec l'expression ubound(T).
Le nombre d'éléments du tableau T est alors ubound(T)+1. On appelle souvent ce
nombre la taille du tableau.

* un variant T peut étre initialisé avec un tableau vide par la syntaxe T=array() ou avec une
suite d'éléments par la syntaxe T=array(élément0, élémentl,, élémentn)

" on peut ajouter des éléments a un tableau T déja créé. Pour cela, on utilise l'instruction
redim preserve T(IN) ou N est le nouvel indice du dernier élément du tableau T.
L'opération est appelée un redimensionnement (redim). Le mot clé preserve indique que
lors de ce redimensionnement, le contenu actuel du tableau doit étre préservé. En
I'absence de ce mot clé, T est redimensionné et vidé de ses éléments.

* un ¢lément T(i) du tableau T est de type variant et peut donc contenir n'importe quelle
valeur et en particulier un tableau. Dans ce cas, la notation T(i)(j) désigne 1'élément j du
tableau T(1).

Ces diverses propriétés des tableaux sont illustrées par le programme qui suit :
http://tahe.developpez.com 31

Programme Résultats

1' tableaux Le tableau t1 a 5 éléments
z t1(0)=1

' on initialise un tableau T1 t1(1)=-4,5

4 tl=array(l,-4.5,"deux", true, #01,/10/20024) t1(2)=deux

5 ' on affiche son nombre d'éléments t1(3)=Vrai

& nl=ubound(tll+1 t1(4)=10/01/02
7wscript.echo "Le tableau t1 a " & nl & " &léments" t1=1:-4,5:deux:Vrai:10/01/02
2 ' an affiche ses waleurs t1(5)=10:20:30
Fwscript.echo "t1(0)=" & £1(0) t1(5)(1)=20
Lowscript.echo "t1(1)=" & t1(1) tl=1 ~ -4,5 ~ deux
Llwscript.echo "t102)=" & t1(2) Eil=g 3 8

Liwscript.echo "t1(3)=" & t1l(3)
Liwscript.echo "tl(4)=" & tl(4)

14 ' on peut afficher la totalité du tableau
Lswscript.echo "t1=" & join(tl,":")

1&

17 ' on rajoute un élément au tableau tl - cet &lément est Tui-méme un tableau
13 Redim Preserve ti(&)

12 £1(5)=array(10,20,30]

clwscript.echo "t1(5)=" & join(tl(c],":"]
clwscript.echo "t1(E]1(1)=" & t1(51(1)

22

23 ' on redimensionne £l & 3 E1éments

24 Relim Preserve tl(2)

2B wscript.echo "tl=" & joinftl," ~ |

&

27 ' on redimensionne & 4 Eléments sans préservation de 1'existant

ZEReDim t103)
sEwscript.echo "tl1=" & join(tl,":")

0
71 I
Commentaires

* on a utilisé ici une fonction appelée join explicitée un peu plus loin.

3.16 Les variables tableaux

11 existe en vbscript une autre facon d'utiliser un tableau, c'est d'utiliser une variable tableau. Une
telle variable doit alors étre obligatoirement déclarée contrairement aux variables scalaires par une
instruction dim. Diverses déclarations sont possibles :

* dim tableau(n) déclare un tableau statique de n+1 éléments numérotés de 0 a n. Ce type
de tableau ne peut pas étre redimensionné

* dim tableau() déclare un tableau dynamique vide. Il devra étre redimensionné pour étre
utilisé par l'instruction redim de la méme maniére que pour un variant contenant un
tableau

* dim tableau(n,m) déclare un tableau a 2 dimensions de (n+1)*(m+1) éléments.
L'élément (i,j) du tableau est noté zablean(i,j). On notera la différence avec un variant ou le
méme élément aurait été noté fablean(i)()).

Pourquoi deux types de tableaux qui finalement sont tres proches ? La documentation de vbscript
n'en parle pas et n'indique pas non plus si I'un est plus performant que l'autre. Par la suite, nous
utiliserons quasi exclusivement le tableau dans un variant dans nos exemples. On se rappellera
cependant que VBscript dérive du langage Visual Basic qui contient lui des données typées
(integer, double, boolean, ...). Dans ce cas, si on doit utiliser un tableau de nombres réels par
exemple, la variable tableau sera plus performante que la variable variant. On déclarera alors
quelque chose comme din tablean(1000) as double pour déclarer un tableau de nombres réels ou
simplement dim tablean() as double si le tableau est dynamique.

Voici un exemple illustrant 'utilisation de variables tableau :

| Programme Résultats

http://tahe.developpez.com 32

1" tableau Le tableau t1 a 5 éléments
2 t1(0)=1

2" on initialise un tableau T1 fixe t1(1)=-4,5

40im £104] t1(2)=deux
SELC0)=1:t1(1)=-4.5:tl(2)="deux"itl(3)=true:itl4)=#01/10,/2002# t1(3)=Vrai

& t1(4)=10/01/02

¥ ' on affiche son nombre d'éléments t1=1:-

Z nl=ubound(tll1+1 4,5:deux:Vrai:10/01/02
Swecript.echo "Le tableau £1 a " & nl & " &léments' Le tableau t1 a 5 éléments
u] t2(0)=0

11 ' on affiche ses waleurs t2(1)(2)=30
l2wscript.echo "ti1(0)=" & t£i(0) (E2=322
13wscript.echo "£101)=" & tl(l)] t3(0,0)=0
ldwscript.echo "t1(2)=" & tl(2)] t3(0,1)=1

1S wscript.echao "t1(3)=" & t1(3) t3(1,0)=10
lewscript.echo "ti1(4)=" & tl(4) t3(1,1)=11

17

1% ' on peut afficher la totalité du tableau

12wscript.echa "t1=" & joinCtil,":"]

20

21 ' on utilise un tableauw £z dynamigque

220im £tz I

23

24 ' on affiche son nombre d'éléments

25 Al=ubound(tll+1

Zewscript.echo "Le tableau £1 a " & nl &
Er

28 ' on redimensionne t2

22 Reldim Preserve tz(z2)

30 £z [0)=0

2l tz(1l)=array(10,20,320)

Jéwscript.echa "tz(0)=" & tz(0)
FZwscript.echa "t201102)=" & t2(1]12)]

34

3% ' on redimensionne £z & 4 El1éments sans préserwvation de 1'existant
FEReDim t2(32]

FFwscript.echo "tz2=" & joinCtz,":"]

35

&1 éments"

3% ' tableau t? & 2 dimensions

40 Dim t3(1,1]

41 £3(0,0)=0:t3(0,1)=1:t3(1,00=10:t3(1,1]1=11
42 wscript.echo "t3(0,00=" & t3(0,0)

43 wscript.echa "tL3(0,1)=" & t3(0,1)
ddwscript.echo "t301,0)=" & t3(1,0)

45 wsCcript.echo "t£301,1)=" & t3(1,1)

4

3.17 Les fonctions split et join

Les fonctions split et join permettent de passer d'une chalne de caracteres a un tableau et vice-
versa :

= Si T est un tableau et car une chalne de caracteres, join(T,car) est une chaine de
caracteres formée par la réunion de tous les éléments du tableau T, chacun étant séparé
du suivant par la chaine car. Ainsi join(array(1,2,3),"abcd") donnera la chaine
"labcd2abed3"

* Si C est une chaine de caracteres formée d'une suite de champs séparés par la chaine car
la fonction split(C,car) est un tableau dont les éléments sont les différents de la chaine C.
Ainsi split("1abcd2abed3","abed") donnera le tableau (1,2,3)

Voici un exemple :

| Programme Résultats
' transformation tableau-->chaine et vice-versa un,2,trois
un
' tableau --> chaine 2
tableau=array("un",2,"trois") trois

chaine=join(tableau,",")
wscript.echo chaine

' chaine --> tableau

tableau2=split(chaine,",")

For i=0 To ubound(tableau2)
wscript.echo tableau2(i)

Next

http://tahe.developpez.com 33

3.18 Les dictionnaires

On a acces a I'élément d'un tableau T lorsqu'on connait son numéro i. Il est alors accessible par la
notation T'(1). Il existe des tableaux dont on accee aux éléments, non pas par un numéro mais par
une chaine de caracteres. L'exemple typique de ce type de tableau est le dictionnaire. Lorsqu'on
cherche la signification d'un mot dans le "Larousse" ou "Le petit Robert", on accéde a celle-ci par
le mot. On pourrait représenter ce dictionnaire par un tableau a 2 colonnes :

motl descriptionl
mot2 description2
mot3 description3

On pourrait alors écrire des choses comme :
dictionnaire("mot1")="description1"
dictionnaire("mot2")="description2"

On est alors proche du fonctionnement d'un tableau si ce n'est que les indices du tableau ne sont
pas des nombres entiers mais des chaines de caracteres. On appelle ce type de tableau un
dictionnaire (ou tableau associatif, hashtable) et les indices chaines de caracteres les clés du
dictionnaire (keys). L'usage des dictionnaires est extrémement fréquent dans le monde
informatique. Nous avons tous une carte de sécurité sociale avec dessus un numéro. Ce numéro
nous identifie de fagon unique et donne acces aux informations qui nous concernent. Dans le
modele dictionnaire("clé")="informations", "clé¢" serait ici le n° de sécurité sociale et
"informations" toutes les informations stockées a notre sujet sur les ordinateurs de la sécurité

sociale.

Sous Windows, on dispose d'un objet Active X appelé "Scripting.Dictionary" qui permet de
créer et gérer des dictionnaires. Un objet Active X est un composant logiciel qui expose une
interface utilisable par des programmes qui peuvent étre écrits en différents langages, tant qu'ils
respectent la norme d'utilisation des objets Active X. L'objet Scripting.dictionary est donc
utilisable par les langages de programmation de Windows : javascript, per, python, C, C++, vb,
vba,... et pas seulement par vbscript.

1 Un objet Scripting.Dictionary est créé par une instruction
set dico=wscript.CreateObject("' Scripting.Dictionary'")
ou simplement
set dico=CreateObject("' Scripting.Dictionary")

CreateObject est une méthode de I'objet WScript permettant de créer des instances d'objets
Active X. La version 2 montre que wsctipt peut étre un objet implicite. Lorsqu'une méthode
ne peut étre "rapprochée” d'un objet, le conteneur WSH essaiera de le rapprocher de 'objet
wscript.

2 Une fois le dictionnaire créé, on va pouvoir lui ajouter des éléments avec la méthode add :
dico.add "clé" valeur
va créer une nouvelle entrée dans le dictionnaire associée a la clé "clé". La valeur associée est
un variant dont une donnée quelconque.

3 Pour récupérer la valeur associée a une clé donnée on utilise la méthode item du

dictionnaire :
var=dico.item("'clé")
ou set var=dico.item("'clé) si la valeur associée a la clé est un objet.

http://tahe.developpez.com 34

4 L'ensemble des clés du dictionnaire peut étre récupéré dans un tableau variant grace a la
méthode keys :
clés=dico.keys
clés est un tableau dont on peut parcourir les éléments.

5 L'ensemble des valeurs du dictionnaire peut étre récupéré dans un tableau variant grace a la
méthode items :
valeurs=dico.items
items est un tableau dont on peut parcourir les éléments.

6 L'existence d'une clé peut étre testée avec la méthode exists :
dico.exists(''clé") est vrai si la clé "clé" existe dans le dictionnaire

7 On peut enlever une entrée du dictionnaire (clé+valeur) avec la méthode remove :
dico.remove("clé") enleve l'entrée du dictionnaire associée a la clé
dico.removeall enléve toutes les clés, c.a.d. vide le dictionnaire.

”Clé".

Le programme suivant utilise ces diverses possibilités :

| Programme

' création et utilisation d'un dictionnaire .
Set dico=CreateObject("Scripting.Dictionary")

' remplisage dico
dico.add "clé1i","valeurli"

dico.add "clé2","valeur2"
dico.add "clé3","valeur3"

' nombre d'éléments
wscript.echo "Le dictionnaire a " & dico.count & " éléments”

' liste des clés

wscript.echo "liste des clés"

cles=dico.keys

For i=0 To ubound(cles)
wscript.echo cles(i)

Next

' liste des valeurs

wscript.echo "liste des valeurs"

valeurs=dico.items

For i=0 To ubound(valeurs)
wscript.echo valeurs(i)

Next

' liste des clés et valeurs
wscript.echo "liste des clés et valeurs"
cles=dico.keys
For i=0 To ubound(cles)

wscript.echo "dico(" & cles(i) & ")=" & dico.item(cles(i))
Next
' recherche d'éléments
' clél
If dico.exists("clél") Then

wscript.echo "La clé clél existe dans le dictionnaire et 1a valeur associée est " &

dico.item("clél"™)

Else

wscript.echo "La clé clél n'existe pas dans le dictionnaire"

End If
' cléa
If dico.exists("cl1é4") Then

wscript.echo "La clé cl1é4 existe dans le dictionnaire et la valeur associée est " &

dico.item("c1é4™)

Else

wscript.echo "La clé clé4 n'existe pas dans le dictionnaire"

End If

on enleve la clé 1
dico.remove("clé1")

http://tahe.developpez.com 35

' liste des clés et valeurs
wscript.echo "liste des clés et valeurs aprés suppression de clél"
cles=dico.keys
For i=0 To ubound(cles)
wscript.echo "dico(" & cles(i) & ")=" & dico.item(cles(i))
Next
' on supprime tout
dico.removeall

' liste des clés et valeurs
wscript.echo "liste des clés et valeurs aprés suppression de tous les éléments”
cles=dico.keys
For i=0 To ubound(cles)
wscript.echo "dico(" & cles(i) & ")=" & dico.item(cles(i))
Next

' fin
wscript.quit @

Résultats

Le dictionnaire a 3 éléments

liste des clés

clél

clé2

clé3

liste des valeurs

valeurl

valeur2

valeur3

liste des clés et valeurs

dico(clél)=valeurl

dico(clé2)=valeur2

dico(clé3)=valeur3

La clé clél existe dans le dictionnaire et la valeur associée est valeurl
La clé clé4 n'existe pas dans le dictionnaire

liste des clés et valeurs aprés suppression de clél
dico(clé2)=valeur2

dico(clé3)=valeur3

liste des clés et valeurs aprés suppression de tous les éléments

3.19 Trier un tableau ou un dictionnaire

1l est courant de vouloir trier un tableau ou un dictionnaire dans l'ordre croissant ou décroissant
de ses valeurs ou de ses clés pour un dictionnaire. Alors que dans la pupart des langages, existent
des fonctions de tri, il ne semble pas en exister en vbscript. C'est une lacune.

3.20 Les arguments d'un programme

11 est possible d'appeler un programme vbscript en lui passant des paramétres comme dans :

cscript progl.vbs argl arg2 argn

Cela permet a l'utilisateur de passer des informations au programme. Comment celui-ci fait-il
g
pour les récupérer ? Regardons le programme suivant :

| Programme Résultats
1' arguments C:\>cscript argl.vbs a b c
2
3 pim arguments, I| I1 y a 3 arguments
El a
5 ' on récupére 1'objet Arguments de 1'objet wscript b
&' 1'objet Arguments est de type collection c
JSet arguments = WSCript.Arguments
2 ' on affiche 1e nombre d'arguments

Swecript.echo "IT v a & arguments.count &
10" on affiche 1es arguments eux-mames

11 For I = 0 To arguments.Count - 1

1z WSCcript.Echo arguments(I]

12 Next

arguments"

http://tahe.developpez.com 36

Commentaires
v WSeript. Arguments est la collection des arguments passés au script
* une collection C est un objet qui a
O une propriété count qui est le nombre d'éléments dans la collection
o une méthode C(z) qui donne I'élément i de la collection

3.21 Une premiére application : IMPOTS

On se propose d'écrire un programme permettant de calculer I'imp6t d'un contribuable. On se
place dans le cas simplifié d'un contribuable n'ayant que son seul salaire a déclarer :

o on calcule le nombre de parts du salarié nbParts=nbEnfants/2 +1 s'il n'est pas
marié, nbEnfants/2+2 s'il est marié, ou #bEnfants est son nombre d'enfants.

° on calcule son revenu imposable R=0.72*S ou S est son salaire annuel

° on calcule son coefficient familial Q=R/N

on calcule son impo6t I d'apres les données suivantes

12620.0 0 0

13190 0.05 631
15640 0.1 1290.5
24740 0.15 2072.5
31810 0.2 3309.5
39970 0.25 4900
48360 0.3 6898.5
55790 0.35 9316.5
92970 0.4 12106
127860 0.45 16754.5
151250 0.50 23147.5
172040 0.55 30710
195000 0.60 39312

0 0.65 49062

Chaque ligne a 3 champs. Pour calculer 1'imp6t I, on recherche la premiére ligne ou QF<=champl. Par exemple,
si QF=30000 on trouvera la ligne

24740 0.15 2072.5

L'imp6t I est alors égal a 0.15*R - 2072.5*nbParts. Si QF est tel que la relation QF<=champl n'est jamais
vérifiée, alors ce sont les coefficcients de la derniére ligne qui sont utilisés. Ici :

(4] 0.65 49062

ce qui donne I'impo6t I=0.65*R - 49062*nbParts.

Le programme est le suivant :

| Programme
1. ' calcul de 1'impdét d'un contribuable
2. ' le programme doit étre appelé avec trois paramétres : marié enfants salaire
3. ' marié : caractére O si marié, N si non marié
4. ' enfants : nombre d'enfants
5. ' salaire : salaire annuel sans les centimes
6.
7. ' aucune vérification de la validité des données n'est faite mais on
8. ' vérifie qu'il y en a bien trois
),
10. ' déclaration obligatoire des variables
11. Option Explicit
12.
13. ' on vérifie qu'il y a 3 arguments

14. Dim nbArguments

15. nbArguments=wscript.arguments.count

16. IT nbArguments<>3 Then

17. wscript.echo "Syntaxe : pg marié enfants salaire”

18. wscript.echo "marié : caractére O si marié, N si non marié"
19. wscript.echo "enfants : nombre d'enfants"

20. wscript.echo "salaire : salaire annuel sans les centimes"

http://tahe.developpez.com 37

21. arrét avec code d'erreur 1
22. wscript.quit 1

23. End If

24.

25. ' on récupére les arguments sans vérifier leur validité

26. Dim marie, enfants, salaire

27. If wscript.arguments(0) = "0" Or wscript.arguments(0)="0" Then
28. marie=true

29. Else

30. marie=false

31. End If

32. ' enfants est un nombre entier

33. enfants=cint(wscript.arguments(1))
S 4

34. salaire est un entier long

35. salaire=clng(wscript.arguments(2))

36.

37. ' on définit les données nécessaire au calcul de 1'impot dans 3 tableaux

38. Dim limites, coeffn, coeffr

39. limites=array(12620,13190,15640,24740,31810,39970,48360, _
40. 55790,92970,127860,151250,172040,195000,0)

41. coeffr=array(0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45, _
42. 0.5,0.55,0.6,0.65)

43. coeffn=array(0,631,1290.5,2072.5,3309.5,4900,6898.5,9316.5, _
44. 12106,16754.5,23147.5,30710,39312,49062)

46. ' on calcule Te nombre de parts

47. Dim nbParts

48. If marie=true Then

49. nbParts=(enfants/2)+2

se. Else

51. nbParts=(enfants/2)+1

52. End If

53. If enfants>=3 Then nbParts=nbParts+0.5

54.

s55. ' on calcule le quotient familial et le revenu imposable

s6. Dim revenu, qf
57. revenu=0.72*salaire
58. gf=revenu/nbParts

59.

66. ' on calcule 1'impot

61. Dim i, impot

62. i=0

63. Do While i<ubound(limites) And gf>1limites(i)
64. i=i+l

65. Loop

66. impot=int(revenu*coeffr(i)-nbParts*coeffn(i))
67.

68. ' on affiche le résultat

69. wscript.echo "impot=" & impot

70.

71. ' on quitte sans erreur

72. wscript.quit @

Résultats
1. C:\>cscript impotsl.vbs o 2 200000
2.
3. imp6t=22504
4.
5. C:\>cscript impotsl.vbs o 2 20000
6.
7. imp6t=0
8.
9. C:\>cscript impotsl.vbs o 2 2000000
10.
11. imp6t=746064
12. . .
13. C:\>cscript impotsl.vbs n 2 200000
14.
15. impot=33388
16. . .
17. C:\>cscript impotsl.vbs n 3 200000
18.
19. imp6t=22504
20.))
21. C:\>cscript impotsl.vbs
22.

23. Syntaxe : pg marié enfants salaire

24. marié : caractére O si marié, N si non marié
25. enfants : nombre d'enfants

26. salaire : salaire annuel sans les centimes

Commentaires :

" le programme utilise ce qui a été exposé précédemment (déclaration des variables,
http://tahe.developpez.com 38

arguments, changements de types, tests, boucles, tableau dans un variant)

" il ne vérifie pas la validité des données, ce qui serait anormal dans un programme réel

* scule la boucle while présente une difficulté. Elle cherche a déterminer l'indice i du
tableau limites pour lequel on a limites(i)>qf et cela pour i<ubound(limites) (c.a.d. ici
i<13) car le dernier élément du tableau limites n'est pas significatif. 11 a été ajouté
uniquement pour que le test [Do while i<ubound(limites) And qf>Timites(i)] puisse se
faire pour i=13. Le test est alors 13<13 and gf>1imites(13) et il faut alors (en vbscript) que
limites(13) existe. Lorsqu'on sort de la boucle while, la dernicre valeur de i calculée
permet de calculer I'imp6t : [impot=int(revenu*coeffr(i)-nbParts*coeffn(i))].

http://tahe.developpez.com 39

4 La gestion des erreurs

En programmation, il y a une régle absolue : un programme ne doit jamais "planter"
sauvagement. Toutes les erreurs qui peuvent se produire lors de l'exécution du programme
doivent étre gérées et des messages d'erreurs significatifs générés.

Si nous reprenons I'exemple des impots traité précédemment, que se passe-t-il si l'utilisateur entre
n'importe quoi pour le nombre d'enfants. Regardons sur cet exemple :

1. C:\>cscript impotsl.vbs o xyzt 200000
2o
3. C:\impotsl.vbs(33, 3) Erreur d'exécution Microsoft VBScript: Type incompatible: ‘cint’

Clest ce qu'on appelle un plantage sauvage. I y a eu "plantage" sur I'instruction
enfants=cint(wscript.arguments(1)) car arguments(1) contenait la chaine "xyzt".

Avant d'utiliser un variant dont on ne connait pas la nature exacte, il faut vérifier son sous-type
exact. On peut faire ceci de différentes facons :

" tester le type réel de la donnée contenue dans un variant avec les fonctions zarfype ou
Yypename

» utiliser une expression réguliere pour vérifier que le contenu du variant correspond a un
certain modcle

* laisser I'erreur se produire puis I'intercepter pour ensuite la gérer

Nous examinons ces différentes méthodes.

4.1 Connaitre le type exact d'une donnée

Rappelons que les fonctions wartype ou varname permettent de connaitre le type exact d'une
donnée. Cela ne nous est pas toujours d'un grand secours. Par exemple, lorsque nous lisons une
donnée tapée au clavier, les fonctions vartype et typename vont nous dire que c'est une chaine de
caracteres car c'est ainsi qu'est considérée toute donnée tapée au clavier. Cela ne nous dit pas si
cette chaine peut par exemple étre considérée comme un nombre valide. On utilise alors d'autres
fonctions pour avoir acces a ce type d'informations :

isNumeric(exipression) rend vrai si expression peut étre utilisée comme un nombre
isDate(excpression) rend vrai si expression peut étre utilisée comme une date
isEmpty(var) rend vrai si la variable var n'a pas été initialisée

isNull(var) rend vrai si la variable var contient des données invalides
isArray(var) rend vrai si var est un tableau

15Object(var) rend vrai si var est un objet

L'exemple suivant demande de taper une donnée au clavier jusqu'a ce que celle-ci soit reconnue
comme un nombre :

| Programme
' lecture d'une donnée jusqu'a ce que celle-ci soit reconnue comme un nombre

:Opt'ion Explicit
. Dim fini, nombre

' on boucle tant que la donnée saisie n'est pas correcte
' la boucle est contrdlée par un booléen fini, mis a faux au départ (= ce n'est pas fini)

ONOUV A WNER

http://tahe.developpez.com 40

fini=false
11. Do While Not fini
12. ' on demande le nombre
13. wscript.stdout.write "Tapez un nombre : "
14. ' on Te 1it
15. nombre=wscript.stdin.readlLine
16. ' le type est forcément string lors d'une lecture
17. wscript.echo "Type de la donnée lue : " & typename(nombre) & "," & vartype(nombre)
18. ' on teste le type réel de la donnée lue
19. If isNumeric(nombre) Then
20. fini=true
21. Else
22. wscript.echo "Erreur, vous n'avez pas tapé un nombre. Recommencez svp..."
23. End If
24. Loop
25.
26. ' confirmation
27. wscript.echo "Merci pour le nombre " & nombre
28.
29. ' et fin
30. wscript.quit @

Résultats

1. Tapez un nombre : a
2. Type de la donnée lue : String,8
3. Erreur, vous n'avez pas tapé un nombre. Recommencez svp...
4. Tapez un nombre : -12
5. Type de la donnée lue : String,8
6. Merci pour le nombre -12

La fonction #sNumeric ne nous dit pas si une expression est un entier ou pas. Pour avoir cette
information, il faut faire des tests supplémentaires. L'exemple suivant demande un nombre entier

>0:

| Programme
1. ' lecture d'une donnée jusqu'a ce que celle-ci soit reconnue comme un nombre entier >0
2.
3. Option Explicit
4.
5. Dim fini, nombre
6.
7. ' on boucle tant que la donnée saisie n'est pas correcte
8. ' la boucle est contrdlée par un booléen fini, mis a faux au départ (= ce n'est pas fini)
o
10. fini=false
11. Do While Not fini
12. ' on demande le nombre
13. wscript.stdout.write "Tapez un nombre entier >0: "
14. " on le Tit
15. nombre=wscript.stdin.readlLine
16. ' on teste le type réel de la donnée lue
17. If isNumeric(nombre) Then
18. ' est-ce un entier (nombre égal a sa partie entiere) positif ?
19. If (nombre-int(nombre))=0 And nombre>0 Then
20. fini=true
21. End If
22. End If
23. ' msg d'erreur éventuel
24. If Not fini Then wscript.echo "Erreur, vous n'avez pas tapé un nombre entier >0.

Recommencez svp..."
25. Loop
26.
27. ' confirmation
28. wscript.echo "Merci pour le nombre entier >0 : " & nombre
29.
30. ' et fin
31. wscript.quit o
Résultats

1. Tapez un nombre entier >0: a
2. Erreur, vous n'avez pas tapé un nombre entier >@. Recommencez svp...
3. Tapez un nombre entier >0: -1
4. Erreur, vous n'avez pas tapé un nombre entier >@. Recommencez svp...
5. Tapez un nombre entier >0: 10.6
6. Erreur, vous n'avez pas tapé un nombre entier >0. Recommencez svp...
7. Tapez un nombre entier >0: 12
8. Merci pour le nombre entier >0 : 12

http://tahe.developpez.com

41

Commentaires :

" int(nombre) donne la partie entiere d'un nombre. Un nombre égal a sa partie entiére est un
entief.

* On notera, de facon intéressante, qu'il a fallu employer le test If (nombre-int(nombre))=0
And nombre>0 parce que le test If nombre=int(nombre) And nombre>0 ne donnait pas les
résultats escomptés. Il ne détectait pas les nombres entiers positifs. Nous laissons au
lecteur le soin de découvrir pourquoi.

* Le test If (nombre-int(nombre))=0 n'est pas totalement fiable. Regardons Il'exemple
d'exécution suivant :

Tapez un nombre entier >0: 4, 1

Merci pour le nombre entier >0 : 4, 1

Les nombres réels ne sont pas représentés de fagon exacte mais de facon approchée. Et
ici, 'opération nombre-int(nombre) a donné 0 a la précision pres de I'ordinateur.

4.2 Les expressions réguliéres

Les expressions régulieres nous permettent de tester le format d'une chalne de caracteres. Ainsi
on peut vérifier qu'une chaine représentant une date est au format jj/mm/aa. On utilise pour cela
un modele et on compare la chaine a ce modele. Ainsi dans cet exemple, | m et a doivent étre des
chiffres. Le modéle d'un format de date valide est alors ""\d\d/\d\d/\d\d" ou le symbole \d
désigne un chiffre. Les symboles utilisables dans un mode¢le sont les suivants (documentation
Microsoft) :

Caractére Description

\ Marque le caractere suivant comme caractere spécial ou littéral. Par exemple, "n"

correspond au caracteére "n". "\n" correspond a un caractere de nouvelle ligne. La
séquence "\\" correspond a "\", tandis que "\ (" correspond a "(".

Correspond au début de la saisie.

Correspond a la fin de la saisie.

n

Correspond au caractere précédent zéro fois ou plusieurs fois. Ainsi, "zo*"

correspond a "z" ou a "zoo".

+ Correspond au caractere précédent une ou plusieurs fois. Ainsi, "zo+" correspond

a "zoo", mais pas a "z".

? Correspond au caractére précédent zéro ou une fois. Par exemple, "arve?"
correspond a "ve" dans "lever".

Correspond a tout caractere unique, sauf le caractére de nouvelle ligne.

(modéle) [Recherche le modéle et mémorise la correspondance. La sous-chaine correspondante
peut étre extraite de la collection Matches obtenue, a 'aide d'Item [0]...[n]. Pour
trouver des correspondances avec des caractéres entre parentheses (), utilisez "\ ("

ou H\)H.

x|y Correspond soit a x soit a). Par exemple, "z|foot" correspond a "z" ou a "foot".
"(z|f)oo" correspond a "zoo" ou a "foo".

{n} 7 est un nombre entier non négatif. Correspond exactement a # fois le caractere.
Par exemple, "0{2}" ne correspond pas a "o" dans "Bob," mais aux deux premiers

http://tahe.developpez.com 42

o]
[*202]

[4-3]

[

\b

\B

\d
\D
\f

\r
\s

\S
\t

\v
\w

\W

\num

\ 7

"o" dans "fooooot".

n est un entier non négatif. Correspond a au moins # fois le caractére. Par exemple,
"0{2,}" ne correspond pas a "o" dans "Bob", mais a tous les "0" dans "fooooot".
"o{1,}" équivaut a "o+" et "0{0,}" équivaut a "o*".

m et n sont des entiers non négatifs. Correspond a au moins 7 et a au plus » fois le
caractére. Par exemple, "o{1,3}" correspond aux trois premiers "o" dans
"foooooot" et "0{0,1}" équivaut a "o?".

Jeu de caracteres. Correspond a l'un des caracteres indiqués. Par exemple, "[abc]"
correspond a "a" dans "plat".

Jeu de caracteres négatif. Correspond a tout caractere non indiqué. Par exemple,
"[*abc]" correspond a "p" dans "plat".

Plage de caracteres. Correspond a tout caractere dans la série spécifiée. Par
exemple, "[a-z]" correspond a tout caractére alphabétique minuscule compris entre

Ha" et "Z".

Plage de caracteres négative. Correspond a tout caractere ne se trouvant pas dans la
série spécifiée. Par exemple, "["m-z|" correspond a tout caractére ne se trouvant

pas entre "'m" et "z".

Correspond a une limite représentant un mot, autrement dit, a la position entre un
mot et un espace. Par exemple, "er\b" correspond a "et" dans "lever", mais pas a
"er" dans "verbe".

Correspond a une limite ne représentant pas un mot. "en*t\B" correspond a "ent"
dans "bien entendu".

Correspond 4 un caractére représentant un chiffre. Equivaut a [0-9].
Correspond 4 un caractére ne représentant pas un chiffre. Equivaut a [*0-9].
Correspond a un caractere de saut de page.

Correspond a un caractere de nouvelle ligne.

Correspond a un caractére de retour chariot.

Correspond a tout espace blanc, y compris I'espace, la tabulation, le saut de page,
etc. Equivaut 2 "[\f\n\r\t\v]".

Correspond a tout caractére d'espace non blanc. Equivaut 2 "[* \f\n\r\t\v]".
Correspond a un caractere de tabulation.
Correspond a un caractere de tabulation verticale.

Correspond a tout caractere représentant un mot et incluant un trait de
soulignement. Equivaut a "[A-Za-20-9_]".

Correspond a tout caractere ne représentant pas un mot. Equivaut a "[*A-Za-z0-

9",

Correspond a num, ou num est un entier positif. Fait référence aux correspondances
mémorisées. Par exemple, "()\1" correspond 2 deux caractéres identiques
consécutifs.

Correspond a #, ou # est une valeur d'échappement octale. Les valeurs
d'échappement octales doivent comprendre 1, 2 ou 3 chiffres. Par exemple, "\11"
et "\011" correspondent tous les deux a un caractére de tabulation. "\0011"
équivaut 2 "\001" & "1". Les valeurs d'échappement octales ne doivent pas excéder
256. Si c'était le cas, seuls les deux premiers chiffres seraient pris en compte dans
l'expression. Permet d'utiliser les codes ASCII dans des expressions régulieres.

http://tahe.developpez.com 43

\x7 Correspond a 7, ou 7 est une valeur d'échappement hexadécimale. Les valeurs
d'échappement hexadécimales doivent comprendre deux chiffres obligatoirement.
Par exemple, "\x41" correspond a "A". "\x041" équivaut a2 "\x04" & "1". Permet
d'utiliser les codes ASCII dans des expressions régulieres.

Un élément dans un modéle peut étre présent en 1 ou plusieurs exemplaires. Considérons
quelques exemples autour du symbole \d qui représente 1 chiffre :

| mod¢éle signification
\d un chiffre
\d? 0 ou 1 chiffre
\d* 0 ou davantage de chiffres
\d+ 1 ou davantage de chiffres
\d{2} 2 chiffres
\d{3,} au moins 3 chiffres
\d{5,7} entre 5 et 7 chiffres

Imaginons maintenant le modele capable de décrire le format attendu pour une chaine de
caracteres :

| chaine recherchée mod¢le |
une date au format jj/mm/aa \d{2}/\d{2}/\d{2}
une heure au format hh:mm:ss \d{2}:\d{2}:\d{2}
un nombre entier non signé \d+
un suite d'espaces éventuellement vide \s*
un nombre entier non signé qui peut étre précédé ou suivi \s*\d+\s*

d'espaces

un nombre entier qui peut étre signé et précédé ou suivi d'espaces \s*[+|-]?\s*\d+\s*

un nombre réel non signé qui peut étre précédé ou suivi d'espaces \s*\d+(\d*)?\s*

un nombre réel qui peut étre signé et précédé ou suivi d'espaces \s*[+|]?\s*\d+(\d*)?\s*
une chaine contenant le mot juste \bjuste\b

On peut préciser ou on recherche le modeéle dans la chaine :

| modéle signification

“modele le modéle commence la chaine

modéle$ le modeéle finit la chaine

“modele$ le modeéle commence et finit la chaine

modele le mode¢le est cherché partout dans la chaine en commengant par le début de celle-ci.
| chaine recherchée mod¢le |

une chaine se terminant par un point d'exclamation 1$

une chaine se terminant par un point \.$

une chaine commencant par la séquence // ~/

une chaine ne comportant qu'un mot éventuellement suivi ou "\s*\w+\s*$§
précédé d'espaces

une chaine ne comportant deux mot éventuellement suivis ou “\s*\w+\s*\w+\s*$
précédés d'espaces

une chalne contenant le mot secret \bsecret\b

Les sous-ensembles d'un modele peuvent étre "récupérés”. Ainsi non seulement, on peut vérifier
qu'une chaine correspond a un mode¢le particulier mais on peut récupérer dans cette chaine les
éléments correspondant aux sous-ensembles du modéle qui ont été entourés de parenthéses.

http://tahe.developpez.com 44

Ainsi si on analyse une chaine contenant une date jj/mm/aa et si on veut de plus récupérer les

éléments jj, mm, aa de cette date on utilisera le modele (\d\d)/(\d\d)/(\d\d).
Voyons sur cette exemple, comment on opére avec vbscript.

1. il nous faut tout d'abord créer un objet RegExp (Regular Expression)
set modele=new regexp
2. ensuite on fixe le mode¢le a tester

modele.pattern="(\d\d)/(\d\d)/(\d\d)"

3. on peut vouloir ne pas faire de différence entre majuscules et minuscules (par défaut elle
est faite). Ici ¢a n'a aucune importance.

modele.IgnoreCase=true

4. on peut vouloir rechercher le modele plusieurs fois dans la chalne (par défaut ce n'est pas
fait)

modele.Global=true

Une recherche globale n'a de sens que si le modéle utilisé ne fait pas référence au début
ou 2 la fin de la chaine.

5. on recherche alors toutes les correspondances du modeéle dans la chaine :

set correspondances=modele.execute(chaine)

La méthode execute d'un objet RegExp rend une collection d'objets de type match. Cet
objet a une propriété value qui est I'élément de chaine correspondant au modele. Si on a
éctit modele.global=true, on peut avoir plusieurs correspondances. C'est pourquoi le résultat
de la méthode execute est une collection de correspondances.

6. le nombre de correspondances est donné par correspondances.count. Si ce nombre
vaut 0, c'est que le modele n'a été trouvé nulle part. La valeur de la correspondance n® i
est donnée par correspondances(i).value. Si le modele contient des sous-modeles entre
parentheses, alors I'éléments de correspondances(i) correspondant a la parenthése j du
modcle est correspondances(i).submatches(j).

Tout ceci est montré dans l'exemple qui suit :

Programme
' expression réguliére

on veut vérifier qu'une chaine contient une date au format jj/mm/aa

. Dim modele
' on définit le modele
Set modele=new regexp
10. modele. pattern—"\b(\d\d)/(\d\d)/(\d\d)\b" ' une date n'importe ou dans la chaine
11. modele.global=true on recherchera le modele plusieurs fois
dans Ta chaine

1
2
3
4.
5. Option Explicit
6
7
8
9.

13. ' c'est l'utilisateur qui donne la chaine dans laquelle on cherchera le modéle
14. Dim chaine, correspondances, i

16. chaine=""

17. ' on boucle tant que chaine<>"fin"

18. Do While true

' on demande a 1'utilisateur de taper un texte

http://tahe.developpez.com 45

20. wscript.stdout.writeLine "Tapez un texte contenant des dates au format jj/mm/aa et fin pour arréter :
21. chaine=wscript.stdin.readLine
22. ' fini si chaine=fin
23. If chaine="fin" Then Exit Do
24. ' on compare la chaine lue au modele de Ta date
25. Set correspondances=modele.execute(chaine)
26. ' a-t-on trouvé une correspondance
27. If correspondances.count<>0 Then
28. ' on a au moins une correspondance
29. For i=0 To correspondances.count-1
38. ' on affiche 1a correspondance i
31. wscript.echo "J'ai trouvé la date " & correspondances(i).value
32. ' on récupére les sous-éléments de 1a correspondance i
33. wscript.echo "Les éléments de la date " & i & " sont (& correspondances(i).submatches(o) & ","
34. & correspondances(i).submatches(l) & ' & correspondances(i). submatches(Z) & "H)"
35. Next
36. Else
37. ' pas de correspondance
38. wscript.echo "Je n'ai pas trouvé de date au format jj/mm/aa dans votre texte"
39. End If
40. Loop
41.
42. ' fini
43. wscript.quit @
Résultats
1. Tapez un texte contenant des dates au format jj/mm/aa et fin pour arrUter :
2. aujourd'hui on est le ©1/01/01 et demain sera le ©2/01/02
3. J'ai trouvé la date @1/01/01
4. Les éléments de la date © sont (01,01,01)
5. J'ai trouvé la date 02/01/02
6. Les éléments de la date 1 sont (02,01,02)
7.
8. Tapez un texte contenant des dates au format jj/mm/aa et fin pour arrUter :
9. une date au format incorrect : 01/01/2002
10. Je n'ai pas trouvé de date au format jj/mm/aa dans votre texte
11.
12. Tapez un texte contenant des dates au format jj/mm/aa et fin pour arrUter :
13. une suite de dates : 10/10/10, 11/11/11, 12/12/12
14. 3J'ai trouvé la date 10/10/10
15. Les éléments de la date @ sont (10,10,10)
16. 3J'ai trouvé la date 11/11/11
17. Les éléments de la date 1 sont (11,11,11)
18. 3J'ai trouvé la date 12/12/12
19. Les éléments de la date 2 sont (12,12,12)
20.
21. Tapez un texte contenant des dates au format jj/mm/aa et fin pour arrUter :
22. fin

Avec les expressions régulicres, le programme testant qu'une saisie clavier est bien un nombre
entier positif pourrait s'écrire comme suit :

Programme

258
26.
27.
28.
29.

' lecture d'une donnée jusqu'a ce que celle-ci soit reconnue comme un nombre
Option Explicit
Dim fini, nombre

' on définit le modéle d'un nombre entier positif (mais qui peut étre nul)
Dim modele
Set modele=new regexp
modele.pattern=""\s*\d+\s*$"
' on boucle tant que la donnée saisie n'est pas correcte
' la boucle est contrdlée par un booléen fini, mis a faux au départ (= ce n'est pas fini)

fini=false

Do while Not fini

' on demande Te nombre
wscript.stdout.write "Tapez un nombre entier >0:
'"on le 1it

nombre=wscript.stdin.readLine

' on teste le format de 1a donnée Tue
Dim correspondances

Set correspondances=modele.execute(nombre)
' Te modele a-t-il été vérifié ?

If correspondances.count<>0 Then

' c'est un entier mais est-il >0 ?
nombre=cint(nombre)

If nombre>0 Then

fini=true

http://tahe.developpez.com 46

3. End If
31. End If

32. msg d'erreur éventuel

33. If Not fini Then wscript.echo "Erreur, vous n'avez pas tapé un nombre entier >0.

Recommencez svp..."

34. Loop
35.
36. ' confirmation
37. wscript.echo "Merci pour le nombre entier >0 : " & nombre
38.
39. ' et fin
40. wscript.quit @
Résultats

. Tapez un nombre entier >0: 10.3

. Erreur, vous n'avez pas tapé un nombre
. Tapez un nombre entier >0: abcd

. Erreur, vous n'avez pas tapé un nombre
. Tapez un nombre entier >0: -4

. Erreur, vous n'avez pas tapé un nombre
. Tapez un nombre entier >0: ©

. Erreur, vous n'avez pas tapé un nombre
. Tapez un nombre entier >0: 1

@. Merci pour le nombre entier >0 : 1

P OVoKNOUTA WNER

entier

entier

entier

entier

>0. Recommencez

>0. Recommencez

>0. Recommencez

>0. Recommencez

svp...

svp...

svp...

svp...

Trouver l'expression réguliere qui nous permet de vérifier qu'une chaine correspond bien a un
certain modele est parfois un véritable défi. Le programme suivant permet de s'entrainer. Il

demande un modele et une chaine et indique alors si la chaine correspond ou non au modele.

Programme

expression réguliere

on définit le modeéle

. Dim modele

. Set modele=new regexp
16. modele.global=true
dans Ta chafine

1
2
3
4.
5. Option Explicit
6
7
8
9

12. ' c'est l'utilisateur qui donne la chaine dans laquelle on cherchera le modele

13. Dim chaine, correspondances, i

15. Do While true

on veut vérifier qu'une chaine correspond a un modéle

16. on demande a 1'utilisateur de taper un modele

17. wscript.stdout.write "Tapez le modele a tester et fin pour arréter :

18. modele.pattern=wscript.stdin.readLine

19. ' fini ?

20. If modele.pattern="fin" Then Exit Do

21. on demande a 1'utilisateur Tles chaines a comparer au modéle

22. Do While true

arréter

25. chaine=wscript.stdin.readLine

26. fini ?

27. If chaine="fin" Then Exit Do

28. on compare la chaine lue au modele de Ta date
29. Set correspondances=modele.execute(chaine)

38. ' a-t-on trouvé une correspondance

31. If correspondances.count<>0 Then

32. ' on a au moins une correspondance

33. For i=0 To correspondances.count-1

34. ' on affiche 1a correspondance i

35. wscript.echo "J'ai trouvé la correspondance " & correspondances(i).value
36. Next

37. Else

38. ' pas de correspondance

39. wscript.echo "Je n'ai pas trouvé de correspondance"

40. End If

41. Loop

42. Loop

43.

44. ' fini

45. wscript.quit @

on demande a 1'utilisateur de taper un modele
24. wscript.stdout.writeLine "Tapez la chaine a tester avec le modéle [" & modele.pattern & "] et fin pour

on recherchera Te modéle plusieurs fois

Résultats

1. Tapez le modele a tester et fin pour arréter : A\s*\d+(\,\d+)*\s*$

http://tahe.developpez.com 47

28
3. Tapez la chaine a tester avec le modele [~\s*\d+(\,\d+)*\s*$] et fin pour arréter :
4. 18

5. J'ai trouvé la correspondance [18]

6

7

8

. Tapez la chaine a tester avec le modele [~\s*\d+(\,\d+)*\s*$] et fin pour arréter :

. 145.678
9. Je n'ai pas trouvé de correspondance
10.
11. Tapez la chaine a tester avec le modéle [~\s*\d+(\,\d+)*\s*$] et fin pour arréter :
12. 145,678

13. J'ai trouvé la correspondance [145,678]

4.3 Intercepter les erreurs d'exécution

Une autre méthode de gestion des erreurs d'exécution est de les laisser se produire, d'en étre
avertis et de les gérer alors. Normalement lorsqu'une erreur se passe a l'exécution, WSH affiche
un message d'erreur et le programme est arrété. Deux instructions nous permettent de modifier
ce fonctionnement :

1. on error resume next

Cette instruction indique au systeme (WSH) que nous allons gérer les erreurs nous-
mémes. Apres cette instruction, toute erreur est simplement ignorée. par le systeme.

2. on error goto @

Cette instruction nous ramene au fonctionnement normal de gestion des erreurs.

Lorsque l'instruction on error resume next est active, nous devons gérer nous-mémes les
erreurs qui peuvent survenir. L'objet Err nous y aide. Cet objet a diverses propriétés et méthodes
dont nous retiendrons les deux suivantes :
* number : un nombre entier numéro de la derniére erreur qui s'est produite. 0 veut dire
"pas d'erreur"
* description : le message d'erreur qu'aurait affiché le systeme si on n'avait pas émis
l'instruction on error resume next

Regardons l'exemple qui suit :

| Programme Résultats

erreur non gérée 1. C:\ err5.vbs(6, 1) Erreur d'exécution Microsoft VBScript: Type
incompatible: 'cdbl'’

. Option Explicit

. Dim nombre

. nombre=cdbl("abcd")
. wscript.echo "nombre=" & nombre

Nouph wNBR

Gérons maintenant l'erreur :

| Programme Résultats

erreur gérée 1. L'erreur [Type incompatible] s'est produite

. Option Explicit

. Dim nombre

' on gere les erreurs nous-mémes

. 0n Error Resume Next

. nombre=cdbl("abcd")

' y-a-t-il eu erreur ?

16. If Err.number<>0 Then

11. wscript.echo "L'erreur [" &
err.description & "] s'est
produite"

12. On Error GoTo O

13. wscript.quit 1

14. End If

http://tahe.developpez.com 48

15. ' pas d'erreur - on revient au
fonctionnement normal

16. On Error GoTo 0

17. wscript.echo "nombre=" & nombre

18. wscript.quit @

Réécrivons le programme de saisie d'un entier >0 avec cette nouvelle méthode :

| Programme

' lecture d'une donnée jusqu'a ce que celle-ci soit reconnue comme un nombre
option Explicit

Dim fini, nombre
' on boucle tant que la donnée saisie n'est pas correcte
' la boucle est contrdlée par un booléen fini, mis a faux au départ (= ce n'est pas fini)

fini=false
Do while Not fini
' on demande le nombre
wscript.stdout.write "Tapez un nombre entier >0:
''on le 1it
nombre=wscript.stdin.readLine
' on teste le format de la donnée Tue
Oon Error Resume Next
nombre=cdb1(nombre)
If err.number=0 Then
' pas d'erreur c'est un nombre
on revient au mode normal de gestion des erreurs
on Error GoTo 0O
' est-ce un entier >0
If (nombre-int(nombre))=0 And nombre>0 Then
fini=true
End If
End If
' on revient au mode normal de gestion des erreurs
on Error GoTo 0O
' msg d'erreur éventuel
If Not fini Then wscript.echo "Erreur, vous n'avez pas tapé un nombre entier >0.
Recommencez svp..."

Loop
' confirmation
wscript.echo "Merci pour le nombre entier >0 : " & nombre
' et fin
wscript.quit o
Résultats

Tapez un nombre entier >0: 4.5

Erreur, vous n'avez pas tapé un nombre entier >@. Recommencez svp...
Tapez un nombre entier >0: 4,5

Erreur, vous n'avez pas tapé un nombre entier >@. Recommencez svp...
Tapez un nombre entier >0: abcd

Erreur, vous n'avez pas tapé un nombre entier >@. Recommencez svp...
Tapez un nombre entier >0: -4

Erreur, vous n'avez pas tapé un nombre entier >@. Recommencez svp...
Tapez un nombre entier >0: 1

Merci pour le nombre entier >0 : 1

Commentaires :
" Cette méthode est parfois la seule utilisable. Il ne faut alors pas oublier de revenir au
mode normal de gestion des erreurs des que la séquence d'instructions susceptible de
générer l'erreur est terminée.

4.4 Application au programme de calcul d'imp6ts

Nous reprenons le programme de calcul d'imp6ts déja écrit pour, cette fois, vérifier la validité des
arguments passés au programme :

Programme

calcul de 1'impot d'un contribuable
' le programme doit étre appelé avec trois paramétres : marié enfants salaire
' marié : caractére O si marié, N si non marié

http://tahe.developpez.com 49

enfants : nombre d'enfants
salaire : salaire annuel sans les centimes

' aucune vérification de la validité des données n'est faite mais on
vérifie qu'il y en a bien trois

' déclaration obligatoire des variables

Option Explicit

Dim syntaxe

syntaxe= _
"Syntaxe : pg marié enfants salaire" & VbCRLF & _
"marié : caractére O si marié, N si non marié" & VvbCRLF & _
"enfants : nombre d'enfants (entier >=0)" & VbCRLF & _
"salaire : salaire annuel sans les centimes (entier >=0)"

on vérifie qu'il y a 3 arguments
Dim nbArguments
nbArguments=wscript.arguments.count
If nbArguments<>3 Then
' msg d'erreur
wscript.echo syntaxe & VbCRLF & VbCRLF & "erreur : nombre d'arguments incorrect"
' arrét avec code d'erreur 1
wscript.quit 1
End If

on récupére les arguments en vérifiant leur validité

un argument est transmis au programme sans espaces devant et derriére

on utilisera des expression réguliéres pour vérifier la validité des données
Dim modele, correspondances

Set modele=new regexp

' le statut marital doit étre parmi les caractéres oOnN
modele.pattern="A[oOnN]$"
Set correspondances=modele.execute(wscript.arguments(0))
If correspondances.count=0 Then
' erreur
wscript.echo syntaxe & vbCRLF & VvbCRLF & "erreur : argument marie incorrect"
on quitte
wscript.quit 2
End If
on récupere la valeur
Dim marie
If Tcase(wscript.arguments(0)) = "o0"Then
marie=true
Else
marie=false
End If

' enfants doit étre un nombre entier >=0
modele.pattern="A\d{1,2}$"
Set correspondances=modele.execute(wscript.arguments(l))
If correspondances.count=0 Then
' erreur
wscript.echo syntaxe & vbCRLF & VvbCRLF & "erreur : argument enfants incorrect"
' on quitte
wscript.quit 3
End If
on récupere la valeur
Dim enfants
enfants=cint(wscript.arguments(1))

' salaire doit étre un entier >=0
modele.pattern="A\d{1,93}$"
Set correspondances=modele.execute(wscript.arguments(2))
If correspondances.count=0 Then
' erreur
wscript.echo syntaxe & vbCRLF & vbCRLF & "erreur : argument salaire incorrect"
' on quitte
wscript.quit 4
End If
' on récupere la valeur
Dim salaire
salaire=clng(wscript.arguments(2))

' on définit Tes données nécessaire au calcul de 1'impdt dans 3 tableaux
Dim limites, coeffn, coeffr
limites=array(12620,13190,15640,24740,31810,39970,48360, _
55790,92970,127860,151250,172040,195000,0)
coeffr=array(0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45, _
0.5,0.55,0.6,0.65)
coeffn=array(e,631,1290.5,2072.5,3309.5,4900,6898.5,9316.5, _
12106,16754.5,23147.5,30716,39312,49062)

' on calcule Te nombre de parts

Dim nbParts

If marie=true Then
nbParts=(enfants/2)+2

http://tahe.developpez.com 50

Else

nbParts=(enfants/2)+1

End If

If enfants>=3 Then nbParts=nbParts+0.5

' on calcule Te quotient familial et le revenu imposable
Dim revenu, qf

revenu=0.72*salaire

gf=revenu/nbParts

' on calcule 1"impot

Dim i, impot

i=0

Do While i<ubound(limites) And gf>1imites(i)
i=i+l

Loop

impot=int(revenu*coeffr(i)-nbParts*coeffn(i))

' on affiche Te résultat

wscript.echo "impot=" & impot

' on quitte sans erreur

wscript.quit @

Résultats

C:\>cscript impots2.vbs

Syntaxe : pg marié enfants salaire

marié : caractere O si marié, N si non marié

enfants : nombre d'enfants (entier >=0)

salaire : salaire annuel sans les centimes (entier >=0)
erreur : nombre d'arguments incorrect

C:\>cscript impots2.vbs a b ¢

Syntaxe : pg marié enfants salaire

marié : caractére O si marié, N si non marié

enfants : nombre d'enfants (entier >=0)

salaire : salaire annuel sans les centimes (entier >=0)

erreur : argument marie incorrect

C:\>cscript impots2.vbs o b ¢

Syntaxe : pg marié enfants salaire

marié : caractéere O si marié, N si non marié

enfants : nombre d'enfants (entier >=0)

salaire : salaire annuel sans les centimes (entier >=0)
erreur : argument enfants incorrect

C:\>cscript impots2.vbs o 2 ¢

Syntaxe : pg marié enfants salaire

marié : caractere O si marié, N si non marié

enfants : nombre d'enfants (entier >=0)

salaire : salaire annuel sans les centimes (entier >=0)
erreur : argument salaire incorrect

C:\>cscript impots2.vbs o 2 200000

impbt=22504

http://tahe.developpez.com

51

5 Les fonctions et procédures

5.1 Les fonctions prédéfinies de vbscript

La richesse d'un langage dérive en grande partie de sa bibliotheque de fonctions, ces dernieres
pouvant étre encapsulées dans des objets sous le nom de méthodes. Sous cet aspect, on peut
considérer que vbscript est plutot pauvre.

Le tableau suivant définit les fonctions de VBScript hors objets. Nous ne les détaillerons pas.
Leur nom est en général une indication de leur role. Le lecteur consultera la documentation pour
avoir des détails sur une fonction particuliere.

Abs Array Asc Atn
CBool CByte CCur CDate
CDbl Chr Clnt ClLng
Conversions Cos CreateObject CSng
Date DateAdd DateDiff DatePart
DateSerial DateValue Day Derived Maths
Eval Exp Filter FormatCurrenc
y

FormatDateTime FormatNumber FormatPercent Getl.ocale
GetObject GetRef Hex Hour
InputBox InStr InStrRev Int, Fixs
IsArray IsDate IsEmpty IsNull
IsNumeric IsObject oin LBound
LCase Left Len LoadPicture
Log LTrim; RTrim; and Trims Maths Mid
Minute Month MonthName MsgBox
Now Oct Replace RGB
Right Rnd Round ScriptEngine
ScriptEngineBuildVersion ScriptEngineMajorVersion ScriptEngineMinorVersio Second

n
Setlocale Sgn Sin Space
Split Sqr StrComp String
Tan Time Timer TimeSerial
TimeValue TypeName UBound UCase
VarType Weekday WeekdayName Year

5.2 Programmation modulaire

Décrire la solution programmée d'un probleme, c'est décrire la suite d'actions élémentaires
exécutables par l'ordinateur et capables de résoudre le probleme. Selon les langages ces
opérations élémentaires sont plus ou moins sophistiquées. On trouve par exemple:

. lire une donnée provenant du clavier ou du disque

. écrire une donnée a I'écran, sur imprimante, sur disque, etc
. calculer des expressions

. se déplacer dans un fichier

http://tahe.developpez.com 52

../../../../st-2020/st-2020/cours/vbscript/vsfctyear.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctweekdayname.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctweekday.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctvartype.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctucase.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctubound.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcttypename.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcttimevalue.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcttimeserial.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcttimer.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcttime.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcttan.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctstring.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctstrcomp.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctsqr.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctsplit.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctspace.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctsin.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctsgn.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctsetlocale.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctsecond.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctscriptengineminorversion.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctscriptengineminorversion.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctscriptenginemajorversion.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctscriptenginebuildversion.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctscriptengine.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctround.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctrnd.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctright.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctrgb.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctreplace.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctoct.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctnow.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctmsgbox.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctmonthname.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctmonth.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctminute.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctmid.htm
../../../../st-2020/st-2020/cours/vbscript/vsidxmathfunctions.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctltrim.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctlog.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctloadpicture.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctlen.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctleft.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctlcase.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctlbound.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctjoin.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctisobject.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctisnumeric.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctisnull.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctisempty.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctisdate.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctisarray.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctint.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctinstrrev.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctinstr.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctinputbox.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcthour.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcthex.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctgetref.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctgetobject.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctgetlocale.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctformatpercent.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctformatnumber.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctformatdatetime.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctformatcurrency.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctformatcurrency.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctfilter.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctexp.htm
../../../../st-2020/st-2020/cours/vbscript/vsfcteval.htm
../../../../st-2020/st-2020/cours/vbscript/vsgrpderivedmath.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctday.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctdatevalue.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctdateserial.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctdatepart.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctdatediff.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctdateadd.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctdate.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcsng.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcreateobject.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcos.htm
../../../../st-2020/st-2020/cours/vbscript/vsidxconversion.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctclng.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcint.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctchr.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcdbl.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcdate.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctccur.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcbyte.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctcbool.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctatn.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctasc.htm
../../../../st-2020/st-2020/cours/vbscript/vsfctarray.htm

Décrire un probleme complexe peut nécessiter plusieurs milliers de ces instructions élémentaires
et plus. Il est alors tres difficile pour I'esprit humain d'avoir une vue globale d'un programme.
Devant cette difficulté d'appréhender le probleme dans sa globalité, on le décompose alors en
sous-problemes plus simples a résoudre. Considérons le probleme suivant : Trier une liste de
valeurs numériques tapées au clavier et afficher la liste triée a I'écran.

On peut dans un premier temps décrire la solution sous la forme suivante:

début
lire les valeurs et les mettre dans un tableau T
trier le tableau T
écrire les valeurs triées du tableau T a 1'écran
fin

On a décomposé le probleme en 3 sous-problemes, plus simples a résoudre. L'écriture
algorithmique est souvent plus formalisée que la précédente et l'algorithme s'écrira plutot:

début
lire_tableau(T)
trier_tableau(T)
écrire_tableau(T)
fin

ou T représente un tableau. Les opérations

. lire_tableau(T)
. trier_tableau(T)
. écrire_tableau(T)

sont des opérations non élémentaires qui doivent étre décrites a leur tour par des opérations
élémentaires. Ceci est fait dans ce qu'on appelle des modules. La donnée T est appelée un
parametre du module. C'est une information que le programme appelant passe au module appelé
(parametre d'entrée) ou recoit du module appelé (parametre de sortie). Les parametres d'un
module sont donc les informations qui sont échangées entre le programme appelant et le module

appelé.

module /ire_tablean(T) T ire tableau |
Hommmmmmemmmmmmo-oe- +
v
T
module #réer_tablean(T) T
I
"
Fommmmmmmmmmm——m oo
i trier_tableau i
o +
i
v
T
module érire_tablean(T) T
I
v
oo s o mm oo +
i €crire_tableau |
o +

Le module /ire_tablean(T) pourrait étre décrit comme suit :

http://tahe.developpez.com 53

début
écrire "Tapez la suite de valeurs a trier sous la forme vall val2 ...
lire valeurs
construire tableau T a partir de la chaine valeurs

fin

Ici, nous avons suffisamment décrit le module /Zre_fableau. En effet, les trois actions nécessaires
ont une traduction immédiate en vbscript. La derniére nécessitera l'utilisation de la fonction split.
Si vbscript n'avait pas cette fonction, l'action 3 devrait étre décomposée a son tour en actions
¢élémentaires ayant un équivalent immédiat en vbscript.

Le module écrire_zablean(T) pourrait étre décrit comme suit :

début
construire chaine texte "valeurl,valeur2,...." a partir du tableau T
écrire texte

fin

Le module éctire_zablean(T) pourrait étre décrit comme suit (on suppose que les indices des
éléments de T commencent a 0) :

début
N<-- indice dernier élément du tableau T
pour IFIN variant de N a 1
faire
//on recherche 1'indice IMAX du plus gd élément de T
// IFIN est 1'indice du dernier élément de T

chercher_max(T, IFIN, IMAX)
// on échange 1'élément le plus grand de T avec le dernier élément de T
échanger (T, IMAX, IFIN)

finfaire

FIN

Ici I'algorithme utilise de nouveau des actions non élémentaires:
. chercher_max(T, IFIN, IMAX)
. échanger(T, IMAX, IFIN)

chercher_max(T, IFIN, IMAX) rend l'indice IMAX de I'élément le plus grand du tableau T dont
l'indice du dernier élément est IFIN.

T IMAX IFIN
| 1 1
v A\ A\
e +
' echanger |
e +
1
1
v
A

http://tahe.developpez.com 54

11 faut donc décrire les nouvelles opérations non élémentaires.

module chercher_mas(A, IFIN, IMAX) s

pour i variant de 1 a IFIN
faire
si T[i]>T[IMAX] alors
début
IMAX<--1

fin

finfaire
fin

module éehanger(T IMAX, IFIN) débUttemp<----T[IMAX]
T[IMAX]<---T[IFIN]
T[IFIN]<---temp
fin

Le probleme initial a été completement décrit a l'aide d'opérations élémentaires vbscript et peut
donc maintenant faire l'objet d'une traduction dans ce langage. On notera que les actions
¢lémentaires peuvent différer d'un langage a I'autre et que donc l'analyse d'un probléeme doit a un
certain moment tenir compte du langage de programmation utilisé. Un objet qui existe dans un
langage peut ne pas exister dans un autre et modifier alors l'algorithme utilisé. Ainsi, si un langage
avait une fonction de tri, il serait ici absurde de ne pas 'utiliser.

Le principe appliqué ici, est celui dit de I'analyse descendante. Si on représente l'ossature de la
solution, on a la chose suivante :

Fom o +
| programme principal i
oo +
Fommmmmmm - + : Fommmmmm o +
1] 1
1 1 1
————————————————————————————— Fommommmmmmo-—— ot
i lire_tableau| i trier_tableau | 1écrire_tableau |
tmmmmmmmmmmm o + ettt & tommmm e +
1 1
+-mmmm o + Fommmmmm o +
i i
—————————————— + e
i chercher_max | i échanger |
e ninininieit + e ininintiidey +

On a une structure en arbre.

5.3 Les fonctions et procédures vbscript

Une fois l'analyse modulaire opérée, le programmeur peut traduire les modules de son algorithme
en fonctions ou procédures vbscript. Les fonctions et procédures admettent toutes deux des parametres
d'entrée/sortie mais la fonction rend un résultat qui permet son utilisation dans des expressions
alors que la procédure n'en rend pas.

5.3.1 Déclaration des fonctions et procédures vbscript
La déclaration d'une procédure vbscript est la suivante

sub nomProcédure([Byref/Byval] paraml, [Byref/Byval] param2, ...)
instructions
end sub

et celle d'une fonction
http://tahe.developpez.com 55

function nomFonction([Byref/Byval] paraml, [Byref/Byval] param2, ...)
instructions
end sub

Pour rendre son résultat, la fonction doit comporter une instruction d'affectation du résultat a
une variable portant le nom de la fonction :

nomFonction=résultat
L'exécution d'une fonction ou procédure s'arréte de deux fagons :

1. ala rencontre de l'instruction de fin de fonction (end function) ou fin de procédure (end
sub)

2. ala rencontre de l'instruction de sortie de fonction (exit function) ou de procédure (exit
sub)

Pour la fonction, on se rappellera que le résultat doit avoir été affecté a une variable portant le
nom de la fonction avant que celle-ci ne se termine par un end function ou exit function.

5.3.2 Modes de passage des paramétres d'une fonction ou procédure

Dans la déclaration des parameétres d'entrée-sortie d'une fonction ou procédure, on précise le
mode (byRef,byVal) de transmission du paramétre du programme appelant vers le programme

appelé :
sub nomProcédure([Byref/Byval] paraml, [Byref/Byval] param2, ...)

function nomFonction([Byref/Byval] paraml, [Byref/Byval] param2, ...)

Lorsque le mode de transmission byRef ou byl/al n'est pas précisé, c'est le mode byRef qui est
utilisé.

Paramétres effectifs, parameétres formels

Soit une fonction vbscript définie par

function nomFonction([Byref/Byval] paramForml, [Byref/Byval] paramForm2, ...)

end function

Les parametres parmamFormi utilisés dans la définition de la fonction ou de la procédure sont
appelés paramétres formels. La fonction précédente pourra étre utilisée a partir du programme
principal ou d'un autre module par une instruction du genre :

résultat=nomFonction(parameffl, paramgff2, ...)

Les parametres parmamEffi utilisés dans l'appel a la fonction ou la procédure sont appelés
parametres effectifs. Lorsque I'exécution de la fonction momFonction commence, les parametres
formels regoivent les valeurs des parameétres effectifs correspondants. Les mots clés fyRef et
byl al tixent le mode de transmission de ces valeurs.

Mode de transmission par valeur (byVal)

Lorsqu'un parametre formel précise ce mode de transmission, le parametre formel et le
parameétre effectif sont alors deux variables différentes. La valeur du parameétre effectif est copiée
dans le parametre formel avant exécution de la fonction ou procédure. Si celle-ci modifie la valeur
du parametre formel au cours de son exécution, cela ne modifie en rien la valeur du parameétre
effectif correspondant. Ce mode de transmission convient bien aux parametres d'entrée de la

http://tahe.developpez.com 56

fonction ou procédure.

Pg. appelant Passage par valeur Pg. appelé

Recopie de valeur

Param. effectif P Param. formel

Mode de transmission par référence (byRef)

Ce mode de transmission est le mode par défaut si aucun mode de transmission du parametre
n'est indiqué. Lorsqu'un parametre formel précise ce mode de transmission, le parametre formel
et le parameétre effectif correspondant sont une seule et méme variable. Ainsi si la fonction
modifie le parametre formel, le parametre effectif est également modifié. Ce mode de
transmission convient bien :

" aux paramctres de sortie car la valeur de ceux-ci doivt étre transmise au programme

appelant
" aux parametres d'entrée couteux a recopier tels les tableaux

Passage par rétérence

Pg. appelant Pg. appelé

Le parameétre formel pomnte
sur le parametre etfectif

Param. effectif B Param. formel

Le programme suivant montre des exemples de passage de parametres :

| Programme

Sub procl(byval i, ByRef j, k)

' i est passé par valeur (byval) - Te paramétre effectif et le parametre formel sont
alors différents

' j est passé par valeur (byref) - Te paramétre effectif et le parametre formel sont
alors identiques

!]elmode de passage de k n'est pas précisé. Par défaut, c'est par référence

i=i+

3=3+1

k=k+1

affiche "dans procl",i,j,k
End Sub

Sub affiche(byval msg, Byval i, Byva1 j, Byval k)

' affiche les valeurs de i et j et

wscript.echo msg & " i=" & i & " j—" & j & " k=" & k
End Sub

B appels aux fonctions et procédures

'init i et j
i=4:j=5 : k=6
' vérification
affiche "dans programme principal, avant 1'appel a procl :",i,j,k

http://tahe.developpez.com 57

' appel procédure procl

procl i,j,k
' vérification

affiche "dans programme principal, aprés 1l'appel a procl :",i,j,k
' fin

wscript.quit @

Résultats

dans programme principal, avant 1'appel a procl : i=4 j=5 k=6
dans procl i=5 j=6 k=7
dans programme principal, aprés l'appel a procl : i=4 j=6 k=7

Commentaires
* Dans un script vbscript, il n'y a pas de place particuliere pour les fonctions et les
procédures. Elles peuvent étre n'importe ou dans le texte source. En général, on les
regroupe soit au début soit a la fin et on fait en sorte que le programme principal
constitue un bloc continu.

5.3.3 Syntaxe d'appel des fonctions et procédures

Soit une procédure p admettant des parametres formels pfl, pf2, ...

* T'appel a la procédure p se fait sous la forme
p pel, pe2, ...

sans parenthéses autour des parametres

" sila procédure p n'admet aucun parameétre, on peut indifféremment utiliser I'appel p ou
p(etla déclaration s«b p ou sub p()

Soit une fonction f admettant des parameétres formels pfl, pf2, ...

* T'appel a la fonction f se fait sous la forme

résultat=f(pel, pe2, ...)

les parentheses autour des parametres sont obligatoires. Si la fonction f n'admet aucun
parameétre, on peut indifféremment utiliser 'appel f ou f{) et la déclaration function f ou

Sunction f{).

" Je résultat de la fonction f peut étre ignoré par le programme appelant. La fonction f est
alors considérée comme une procédure et suit les regles d'appel des procédures. On écrit
alors f pel, pe2, ... (sans parentheses) pour appeler la fonction f.

Si la fonction ou procédure est une méthode d'objet, il semblerait que les regles soient quelque
peu différentes et non homogenes.
® ainsi on peut écrire MyFile.WriteLine "Ceci est un test." ou MyFile.writeLine("Ceci
est un test.")
" mais si on peut écrire wscript.echo 4, on ne peut pas écrire wscript.echo(4).

On s'en tiendra aux regles suivantes :
" pas de parenthéses autour des parametres d'une procédure ou d'une fonction utilisée
comme une procédure

http://tahe.developpez.com 58

» parenthéses autour des parametres d'une fonction
5.3.4 Quelques exemples de fonctions

On trouvera ci-dessous quelques exemples de définitions et utilisations de fonctions :

Programme

Function plusgrandque(Cbyval i, Byval j)
' rend le booléen vrai si i>j, le booléen faux sinon
' vérification des données
If disnumeric(i) And isnumeric(j) Then
If i>j Then
plusgrandque=true
Else
plusgrandque=false
End If
Else
wscript.echo "Arguments (" & i & "," & j & ") erronés”
plusgrandque=false
End If
Exit Function
End Function

Function rendunTableau(byval n)
' rend un tableau de n éléments
tableau=array()
vérification validité du paramétre n
If isnumeric(n) And n>=1 Then
ReDim Preserve tableau(n)
For i= 0 To n-1
tableau(i)=1i
Next
Else
wscript.echo "Argument [" & n & "] erroné”
End If
' on rend le résultat
rendUnTableau=tableau
End Function

Function argumentsvariables(byref arguments)
' arguments est un tableau de nombres dont on rend la somme
somme=0
For i=0 To ubound(arguments)
somme=somme+arguments (i)
Next
argumentsVariables=somme
End Function

' deux fonctions sans parametres déclarées de 2 facons différentes
Function sansParametresl

sansParametres=4

End Function

Function sansParametres2()
sansParametres=4
End Function

B it e appels aux fonctions et procédures

' appels fonction plusgrandque
wscript.echo "plusgrandque(10,6)=" & plusgrandque(10,6)
wscript.echo "plusgrandque(6,10)=" & plusgrandque(6,10)
wscript.echo "plusgrandque(6,6)=" & plusgrandque(6,6)
wscript.echo "plusgrandque(6,'a')=" & plusgrandque(6,"a")

' appels a la fonction rendUnTableau
monTableau=rendunTableau(10)
For i=0 To ubound(monTableau)
wscript.echo monTableau(i)

Next

monTableau=rendUnTableau(-6)

For i=0 To ubound(monTableau)
wscript.echo monTableau(i)

Next

appels a la fonction argumentsVariables
wscript.echo "somme=" & argumentsVariables(array(-1,2,7,8))
wscript.echo "somme=" & argumentsVariables(array(-1,10,12))

appels des fonctions sans paramétres
res=sansParametresl

http://tahe.developpez.com 59

res=sansParametres1()
sansParametresl
sansParametres1()

res=sansParametres2
res=sansParametres2()
sansParametres2
sansParametres2()

' fin

wscript.quit @

Résultats

plusgrandque(10,6)=Vrai
plusgrandque(6,10)=Faux
plusgrandque(6,6)=Faux
Arguments (6,a) erronés
plusgrandque(6, 'a')=Faux

2]

1

2

3

a

5

6

7

8

9

Argument [-6] erroné
somme=16

somme=21

somme=10
Commentaires

* la fonction rendUnTablean montre qu'une fonction peut rendre plusieurs résultats et non
un seul. 11 suffit qu'elle les place dans un variant tableau et qu'elle rende ce variant comme
résultat.

* inversement la fonction argumentsVariables montre qu'on peut écrire une fonction qui
admet un nombre variable d'arguments. Il suffit 1a également de les mettre dans un
variant tableau et de faire de ce variant un parametre de la fonction.

5.3.5 Paramétre de sortie ou résultat d'une fonction

Supposons que l'analyse d'une application ait montré la nécessité d'un module M avec des
parametres d'entrée Ei et des parametres de sortie Sj. Rappelons que les parametres d'entrée sont
des informations que le programme appelant donne au programme appelé et qu'inversement les
paramctres de sortie sont des informations que le programme appelé donne au programme
appelant. On a en vbscript plusieurs solutions pour les parameétres de sortie :

s'il n'y a qu'un seul parameétre de sortie, on peut en faire le résultat d'une fonction. Il n'y a
alors plus de parametre de sortie mais simplement un résultat de fonction.

s'il y a n parameétres de sortie, I'un d'entre-eux peut servir de résultat de fonction , les n-1
autres restant des parametres de sortie. On peut aussi ne pas utiliser de fonction mais une
procédure a n parametres de sortie. On peut également utiliser une fonction qui rendra
un tableau dans lequel on aura placé les n valeurs a rendre au programme appelant. On se
rappellera que le programme appelé rend ses résultats au programme appelant par recopie
de valeurs. Cette recopie est évitée dans le cas de parametres de sortie passés par
référence. Il y a donc dans cette derniére solution un gain de temps.

5.4 Le programme Vbscript de tri de valeurs

Nous avions commencé la discussion sur la programmation modulaire par I'étude algorithmique

d'un tri
faite :

de valeurs numériques tapées au clavier. Voici la traduction VBScript qui pourrait en étre

http://tahe.developpez.com 60

Programme

' programme pripcipal
Option Explicit

Dim T ' le tableau de valeurs a trier

' lecture des valeurs
T=1lire_tableau

' tri des valeurs
trier_tableau T

' affichage des valeurs triées
ecrire_tableau T

' fin
wscript.quit @

---------- fonctions & procédures

———————— lire_tableau
Function Tire_tableau
' on demande les valeurs
wscript.stdout.write "Tapez les valeurs a trier sous la forme vall val2 ... valn :
'"'on les 1it
Dim valeurs
valeurs=wscript.stdin.readLine
' on les met dans un tableau
lire_tableau=split(valeurs," ")
End Function

-------- ecrire_tableau

Sub ecrire_tableau(byref T)
' affiche le contenu du tableau T
wscript.echo join(T," ")

End Sub

So----- trier_tableau
Sub trier_tableau (byref T))
tri le tableau T en ordre croissant

' on cherche 1'indice imax du_tableau T[O0..ifin] o
' pour échanger T[imax] avec le dernier élément du tableau T[0..ifin]
' ensuite on recommence avec un tableau ayant 1 élément de moins

Dim ifin, imax, temp
For ifin=ubound(T) To 1 Step -1
' on cherche 1'indice imax du tableau T[O0..ifin]
imax=chercher_max(T,ifin)
' on 1'échange Te max avec le dernier élément du tableau T[O..ifin]
temp=T(ifin):T(ifin)=T(imax):T(imax)=temp
Next
End Sub

-------- chercher_max
Function chercher_max(byrRef T, Byval ifin)
' on cherche T'indice imax du tableau T[O..ifin]
Dim i, imax
imax=0
For i=1 To ifin
If cdb1(T(i))>cdb]l(T(imax)) Then imax=i
Next
' on rend le résultat
chercher_max=imax
End Function

| Résultats

Tapez les valeurs a trier sous la forme vall val2 ... valn : 10 9 8 7 6 1
16780910

Commentaires :

* le module dhanger qui avait été identifié dans l'algorithme initial n'a pas fait ici l'objet d'un
module en vbscript patce que jugé trop simple pour faire I'objet d'un module particulier.

5.5 Le programme IMPOTS sous forme modulaire

Nous reprenons le programme de calcul de 'impot écrit cette fois sous forme modulaire

http://tahe.developpez.com 61

Programme

calcul de 1'impdét d'un contribuable

le programme doit étre appelé avec trois parameétres : marié enfants salaire
marié : caractére O si marié, N si non marié

' enfants : nombre d'enfants

salaire : salaire annuel sans les centimes

déclaration obligatoire des variables
Option Explicit
Dim erreur

on récupére les arguments en vérifiant leur validité

Dim marie, enfants, salaire

erreur=getArguments(marie,enfants,salaire)

' erreur ?

If erreur(0)<>0 Then wscript.echo erreur(l) : wscript.quit erreur(0)

on récupere les données nécessaires au calcul de 1'impot
Dim limites, coeffR, coeffN
getData limites,coeffR,coeffN
' on affiche Te résultat
wscript.echo "impét=" & calculerImpot(marie,enfants,salaire,limites,coeffR,coeffN)
' on quitte sans erreur
wscript.quit @

———————————— fonctions et procédures

——————————— getArguments

Funct1on getArguments(byref marie, ByRef enfants, ByRef salaire)

doit récupérer trois valeurs passées comme argument au programme principal
un argument est transmis au programme sans espaces devant et derrieére

on utilisera des expression réguliéres pour vérifier la validité des données

rend un variant tableau erreur a 2 valeurs
erreur(0) : code d'erreur, 0 si pas d'erreur)
erreur(l) : message d'erreur si erreur sinon la chaine vide

Dim syntaxe

syntaxe= _
"Syntaxe : pg marié enfants salaire" & VvbCRLF & _
"marié : caractére O si marié, N si non marié" & VvbCRLF & _
"enfants : nombre d'enfants (entier >=0)" & VbCRLF & _
"salaire : salaire annuel sans les centimes (entier >=0)"

' on vérifie qu'il y a 3 arguments
Dim nbArguments
nbArguments=wscript.arguments.count
If nbArguments<>3 Then
' msg d'erreur
getArguments= array(l,syntaxe & VbCRLF & VbCRLF & "erreur : nombre d'arguments
incorrect™)
' fin
Exit Function
End If

Dim modele, correspondances
Set modele=new regexp
' le statut marital doit étre parmi les caractéres oOnN
modele.pattern="A[oOnN]$"
Set correspondances=modele.execute(wscript.arguments(0))
If correspondances.count=0 Then
' msg d'erreur
getArguments=array(2,syntaxe & vbCRLF & vbCRLF & "erreur : argument marie incorrect")
on quitte
Exit Function
End If
' on récupere la valeur
If Tcase(wscript.arguments(0)) = "o0"Then
marie=true
Else
marie=false
End If
' enfants doit étre un nombre entier >=0
modele.pattern="A\d{1,2}$"
Set correspondances=modele.execute(wscript.arguments(l))
If correspondances.count=0 Then
' erreur
getArguments= array(3,syntaxe & vbCRLF & VvbCRLF & "erreur : argument enfants incorrect")
' on quitte
Exit Function
End If

http://tahe.developpez.com

on récupere Ta valeur

enfants=cint(wscript.arguments(1))

salaire doit étre un entier >=0

modele.pattern="A\d{1,93}$"
Set correspondances=modele.execute(wscript.arguments(2))
If|correspondances.count:O Then

erreur

getArguments= array(4,syntaxe & vbCRLF & VvbCRLF & "erreur : argument salaire incorrect")

on quitte

Exit Function

End If

on récupere la valeur

salaire=clng(wscript.arguments(2))

c'est fini sans erreur

getArguments=array(0,"")
End Function

—————— getData

Suk') getData(byref Timites, ByRef coeffR, ByRef coeffN)

on définit Tes données nécessaire au calcul de 1"impét dans 3 tableaux

limites=array(12620,13190,15640,24740,31810,39970,48360, _
55790,92970,127860,151256,172040,195000,0)
coeffr=array(0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45, _
0.5,0.55,0.6,0.65)
coeffn=array(0,631,1290.5,2072.5,3309.5,4900,6898.5,9316.5, _
12106,16754.5,23147.5,30710,39312,49062)
End Sub

—————— calculerImpot

Function calculerImpot(byval marie,Byval enfants,Byval salaire, ByRef limites, ByRef
coeffR, ByRef coeffN)

on calcule 1e nombre de parts

Dim nbParts
If marie=true Then

nbParts=(enfants/2)+2
Else

nbParts=(enfants/2)+1

End

If

If enfants>=3 Then nbParts=nbParts+0.5

on calcule le quotient familial et Te revenu imposable

Dim revenu, qf
revenu=0.72*salaire
gf=revenu/nbParts

on calcule 1'impot

Dim i, impot

i=0

Do While i<ubound(Timites) And gf>1limites(i)

i=i+1

Loop

calculerIont=int(revenu*coeffr(i)-anarts*coeffn(i))
End Function

Commentaires

la fonction getArguments permet de récupérer les informations (marie, enfants, salaire)
du contribuable. Ici, elles sont passées en arguments au programme vbscript. Si cela
devait changer, par exemple si ces arguments venaient d'une interface graphique, seule la
procédure gerArguments devrait étre réécrite et pas les autres.

la fonction gezArguments peut détecter des erreurs sur les arguments. Lorsque ceci se
produit, on aurait pu décider d'arréter l'exécution du programme dans la fonction
getArguments par une instruction wseript.quit. Ceci ne doit jamais étre fait dans une
fonction ou procédure. Si une fonction ou procédure détecte une erreur, elle doit le
signaler d'une facon ou d'une autre au programme appelant. C'est a Iui de prendre la
décision d'arréter l'exécution ou non, pas a la procédure. Dans notre exemple, le
programme appelant pourrait décider de redemander a l'utilisateur de retaper la donnée
erronée au clavier plutot que d'arréter l'exécution.

ici, la fonction getArguments rend un variant tableau ou le ler élément est un code d'erreur
(0 si pas d'erreur) et le second un message d'erreur siil y a eu erreur. En testant le résultat

http://tahe.developpez.com 63

obtenu, le programme appelant peut savoir s'il y a eu erreur ou non.

* la procédure getData permet d'obtenir les données nécessaires au calcul de 1'impot. Ici
elles sont directement définies dans la procédure getData. Si ces données devaient
provenir d'une autre source, d'un fichier ou d'une base de données par exemple, seule la
procédure getData devrait étre réécrite et pas les autres.

* la fonction calculerImpot permet de calculer I'imp6t une fois que toutes les données ont
été obtenues quelque soit la fagcon dont elles ont été obtenues.

" on notera donc qu'une écriture modulaire permet une (ré)utilisation de certains modules
dans différents contextes. Ce concept a été dans les vingt dernicres années fortement
développé dans le concept d'objet.

http://tahe.developpez.com 64

6 Les fichiers texte

Un fichier texte est un fichier contenant des lignes de texte. Examinons la création et 'utilisation
de tels fichiers sur des exemples.

6.1 Création et utilisation

| Programme

1' création & remplissage d'un fichier texte

Z20ption Explicit

2 0im objFichier,MyFile

4Zanst ForReading = 1, Farwriting = 2z, Forappending = &

E

&' on crée un objet fichier

J2et abjFichier=Createdbject("scripting.Filesystemibject"])

' on crée un fichier texte

Z5et MyFile= abjFichier.0penTextFile("testfile, t=xt'", Forwriting, Truel
10" agn écrit une Tigne de texte dedans

11MyFile.writeLine "1ignel"

12 ' on ferme Te fichier texte

12 MyFile.Close

14

15 ' on Tui ajoute des &1éments

1& Set MyFile= objFichier.OpenTextFile("testfile. txt", Forappending, Truel
17 ' on écrit une Tigne de texte dedans

1EMyFile.writeLine "l1ignez2" & whZRLF & "1igne3”

12 ' on ferme 1e fichier texte

Z0MyFile.Zlose

21 I

22 ' on ouvre le fichier en lecture

232 5et MyFile= objFichier.OpenTextFile("testfile. txt", ForkReading)
24 ' on 141t tout le contenu

2% dim 11igne|

Ze 00 While Mot MyFile.AtEndOTStream

27 ligne=MyFile.ReadLine

28 wsCcript.echo ligne

29 Loop

20" on ferme Te fichier texte

Z1lMyFile.Close

32

23 ' Tin

Zdwscript.quit o0

Résultats

C:\>cscript ficl.vbs
C:\>dir

FIC1 VBS 352 @7/01/02 7:07 ficl.vbs
TESTFILE TXT 25 @7/01/02 7:07 testfile.txt

C:\>more testfile.txt

Ceci est un autre test.

Commentaires

* la ligne 7 crée un objet fichier de type "Seripting.FileSystemObject" par la fonction
CreateObject("'Scripting. FileSystemObject”’). Un tel objet permet l'acces a tout fichier du
systeme pas simplement a des fichiers texte.

* laligne 9 crée un objet "TextStream". La création de cet objet est associée a la création du
fichier zestfile.txt. Ce fichier n'est pas désigné par un nom absolu du genre e\dirf\dir2\....
\Zestfile.txct mais par un nom relatif zestfile.txt. 1l sera alors créé dans le répertoire d'ou sera
lancée la commande d'exécution du fichier.

* e systeme de fichiers du systeme windows n'a pas connaissance de concepts tels que
fichier texte ou fichier non texte. Il ne connait que des fichiers. C'est donc au programme
qui exploite ce fichier de savoir s'il va le traiter comme un fichier texte ou non.

* Laligne 9 crée un objet d'ou la commande sez utilisée pour l'affectation. La création d'un
objet fichier texte passe par la création de 2 objets :

o la création d'un objet Seripting FileSystemObject (ligne 7)
o puis par la création d'un objet "TextStream" (fichier texte) par la méthode

http://tahe.developpez.com 65

OpenTextFile de 1'objet Seripting. FileSystenObject qui admet plusieurs parametres :
* le nom du fichier a gérer (obligatoire)
* le mode d'utilisation du fichier. C'est un entier avec 3 valeurs possibles :
e 1 :utilisation du fichier en lecture
e 2 : utilisation du fichier en écriture. S'il n'existe pas déja et si le
3ieme paramctre est présent et a la valeur true, il est créé sinon il
n'est pas. S'il existe déja, il est écrasé.
e §: utilisation du fichier en ajout, c.a.d. écriture en fin de fichier. Si
le fichier n'existe pas déja et si le 3ieme parametre est présent et a
la valeur true, il est créé sinon il n'est pas.
la ligne 11 écrit une ligne de texte avec la méthode WriteLine de I'objet TextStream créé.
la ligne 13 "ferme" le fichier. On ne peut alors plus écrire ou lire dedans.
la ligne 16 crée un nouvel objet "TextStream" pour exploiter le méme fichier que
précédemment mais cette fois-ci en mode "ajout". Les lignes qui seront écrites le seront
derriere les lignes existantes.
la ligne 18 écrit deux nouvelles lignes sachant que la constante vbCRLF est la marque de
fin de ligne des fichiers texte.
la ligne 20 ferme de nouveau le fichier
la ligne 23 le rouvre en mode "lecture" : on va lire le contenu du fichier.
La ligne 27 lit une ligne de texte avec la méthode Readline de 1'objet TextStream. Lotrsque
le fichier vient d'étre "ouvert", on est positionné sur la lére ligne de texte de celui-ci.
Lorsque celle-ci a été lue par la méthode Readline, on est positionné sur la seconde ligne.
Ainsi la méthode Readline non seulement lit la ligne courante mais "avance" ensuite
automatiquement a la ligne suivante.
Pour ligne toutes les lignes de texte, la méthode Readline doit étre appliquée de fagon
répétée dans une boucle. Celle-ci (ligne 26) se termine lorsque l'attribut AEndOfStream de
l'objet TextStream a la valeur frue. Cela signifie alors qu'il n'y a plus de lignes a lire dans le
fichier.

6.2 Les cas d'erreur

On rencontre deux cas d'erreur fréquents :

ouverture en lecture d'un fichier qui n'existe pas
ouverture en écriture ou ajout d'un fichier qui n'existe pas avec comme le troisieme
parametre a false dans l'appel a la méthode OpenTextEile.

Le programme suivant montre comment détecter ces erreurs :

Programme

' création & remplissage d'un fichier texte

Option

Explicit

Dim objFichier,MyFile o)
const ForReading = 1, ForWriting = 2, ForAppending = 8
Dim codeErreur

' on créq un objet fichier . . . i .
Set objFichier=CreateObject("Scripting.FileSystemobject")

' on ouvre un fichier texte devant exister en lecture

On Error Resume Next

Set MyFile= objFichier.openTextFile("abcd", ForReading)
codeErreur=err.number

on Error GoTo O

If codeErreur<>0 Then

e

fichier n'existe pas

wscript.echo "Le fichier [abcd] n'existe pas”

Else
1

on

ferme le fichier texte

MyFile.Close

End If

http://tahe.developpez.com 66

on ouvre un fichier texte devant exister en écriture

on Error Resume Next

Set MyFile= objFichier.openTextFile("abcd", ForWriting, False)

codeErreur=err.number

on Error GoTo O

If codeErreur<>0 Then
wscript.echo "Le fichier [abcd] n'existe pas"

Else
' on ferme le fichier texte
MyFile.Close

End If

' on ouvre un fichier texte devant exister en ajout
on Error Resume Next
Set MyFile= objFichier.openTextFile("abcd", ForAppending, False)
codeErreur=err.number
on Error GoTo O
If codeErreur<>0 Then
wscript.echo "Le fichier [abcd] n'existe pas"
Else
' on ferme le fichier texte
MyFile.Close

End If
' fin
wscript.quit ©
Résultats
C:\>dir
FIC1 VBS 964 07/01/02 7:54 ficl.vbs
TESTFILE TXT 0 o7/01/02 8:18 testfile.txt
FIC2 VBS 1 252 0@7/01/02 8:23 fic2.vbs

3 fichier(s)
2 répertoire(s)

2 216 octets
4 007.11 Mo libre

C:\>cscript fic2.vbs
Le fichier [abcd] n'existe pas

Le fichier [abcd] n'existe pas
Le fichier [abcd] n'existe pas

6.3 L'application IMPOTS avec un fichier texte

Nous reprenons l'application de calcul de I'impo6t en supposant que les données nécessaires au

calcul de I'impo6t sont dans un fichier texte appelé data.rxt:

12620 13190 15640 24740 31810 39970 48360 55790 92970 127860 151250 172040 195000 0
0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65
@ 631 1290,5 2072,5 3309,5 4900 6898,5 9316,5 12106 16754,5 23147,5 30710 39312 49062

Les trois lignes contiennent respectivement les données des tableaux limites, coeffR et coeffN de
l'application. Grace a la modularisation de notre application, les modifications interviennent
essentiellement dans la procédure getData chargée de construire les trois tableaux. Le nouveau

programme est le suivant :

| Programme

calcul de 1'impdét d'un contribuable

le programme doit étre appelé avec trois paramétres :
marié : caractére O si marié, N si non marié

' enfants : nombre d'enfants

salaire : salaire annuel sans les centimes

marié enfants salaire

déclaration obligatoire des variables
Option Explicit
D1m erreur

on récupére les arguments en vérifiant leur validité

Dim marie, enfants, salaire
erreur=getArguments(marie,enfants,salaire)

' erreur ?

If erreur(0)<>0 Then wscript.echo erreur(l)

on récupere les données nécessaires au calcul de 1'impdt
Dim limites, coeffR, coeffN
erreur=getData(limites, coeffR, coeffN)
http://tahe.developpez.com

wscript.quit erreur(0)

erreur ?

If erreur(0)<>0 Then wscript.echo erreur(l) : wscript.quit 5
' on affiche Te résultat

wscript.echo "impot=" & calculerImpot(marie,enfants,salaire,limites,coeffR,coeffN)
' on quitte sans erreur
wscript.quit @

............ fonctions et procédures

——————————— getArguments
Funct10n getArguments(byref marie, ByRef enfants, ByRef salaire)
doit récupérer trois valeurs passees comme argument au programme principal
' un argument est transmis au programme sans espaces devant et derrieére
' on utilisera des expression réguliéres pour vérifier Tla validité des données

rend un variant tableau erreur a 2 valeurs
" erreur(0) : code d'erreur, 0 si pas d'erreur A)
erreur(l) : message d'erreur si erreur sinon la chaine vide

Dim syntaxe
syntaxe= _
"Syntaxe : pg marié enfants salaire" & VbCRLF & _
"marié : caractére O si marié, N si non marié" & VbCRLF & _
"enfants : nombre d'enfants (entier >=0)" & VbCRLF & _
"salaire : salaire annuel sans les centimes (entier >=0)"
' on vérifie qu'il y a 3 arguments
Dim nbArguments
nbArguments=wscript.arguments.count
If nbArguments<>3 Then
' msg d'erreur
getArguments= array(l,syntaxe & VvbCRLF & VbCRLF & "erreur : nombre d'arguments
1ncorrect D)
fin
Exit Function
End If

Dim modele, correspondances
Set modele=new regexp

' Te statut marital doit étre parmi les caractéres oOnN
modele.pattern="A[oOnN]$"
Set correspondances=modele.execute(wscript.arguments(0))
If correspondances.count=0 Then
' msg d'erreur
getArguments=array(2,syntaxe & vbCRLF & vbCRLF & "erreur : argument marie incorrect")
' on quitte
Exit Function
End If
on récupere la valeur
If Tcase(wscript.arguments(0)) = "o0"Then
marie=true
Else
marie=false
End If

' enfants doit étre un nombre entier >=0
modele.pattern="A\d{1,23}$"
Set correspondances=modele.execute(wscript.arguments(l))
If correspondances.count=0 Then
erreur
getArguments= array(3,syntaxe & VbCRLF & VbCRLF & "erreur : argument enfants incorrect")
' on quitte
Exit Function
End If
' on récupere la valeur
enfants=cint(wscript.arguments(1))
' salaire doit étre un entier >=0
modele.pattern="A\d{1,93}$"
Set correspondances=modele.execute(wscript.arguments(2))
If correspondances.count=0 Then
erreur
getArguments= array(4,syntaxe & vbCRLF & VvbCRLF & "erreur : argument salaire incorrect")
' on quitte
Exit Function
End If
' on récupere la valeur
salaire=clng(wscript.arguments(2))
' c'est fini sans erreur
getArguments=array(0,"")
End Function

B getData
http://tahe.developpez.com

Function getData(byref Timites, ByRef coeffR, ByRef coeffN) o
' les données des trois tableaux Timites, coeffR, coeffN sont dans un fichier texte

' appelé data.txt. Chaque tableau occupe une ligne sous la forme vall val2 ... valn
' on trouve dans 1'ordre limites, coeffR, coeffN

" rend un variant erreur tableau a 2 éléments pour gérer 1'éventuelle erreur
" erreur(0) : 0 si pas d'erreur, un nombre entier >0 sinon
' erreur(l) : Te message d'erreur si erreur

Dim objFichier,MyFile,codeErreur
const ForReading = 1, dataFileName="data.txt"

' on crée un objet fichier

Set objFichier=Createobject("Scripting.FileSystemobject")

' on ouvre le fichier data.txt en Tlecture

On Error Resume Next

Set MyFile= objFichier.openTextFile(dataFileName, ForReading)

' erreur ?

codeErreur=err.number

Oon Error GoTo O

If codeErreur<>0 Then
'"il y a eu erreur - on la note

getData=array(1, "Impossible d'ouvrir le fichier des données [" & dataFileName & "] en lecture")

' on rentre
Exit Function

End If

on suppose maintenant que le contenu est correct et on ne fait aucune vérification
'"'on 1it les 3 Tignes

Timites
Dim ligne, i
ligne=MyFile.ReadLine
getDataFromLine ligne,limites

' coeffR
ligne=MyFile.ReadLine
getDataFromLine ligne,coeffR

' coeffN
ligne=MyFile.ReadLine
coeffN=split(ligne," ")
getDataFromLine ligne,coeffN

' on ferme le fichier
MyFile.close

' c'est fini sans erreur
getData=array(0,"")
End Function

B getDataFromLine

Sub getbDataFromLine(byref Tigne, ByRef tableau)
' met dans tableau les valeurs numériques contenues dans Tligne
' celles-ci sont séparées par un ou plusieurs espaces

' au départ le tableau est vide
tableau=array()

' on définit un modeéle pour 1a Tigne
Dim modele, correspondances

Set modele= New RegExP

with modele

.pattern="\d+,\d+|\d+" ' 140,5 ou 140
.global=true ' toutes les valeurs
End with

' on analyse la Tigne
Set correspondances=modele.execute(ligne)
Dim i
For i=0 To correspondances.count-1
' on redimensionne le tableau
ReDim Preserve tableau(i)
' on affecte une valeur au nouvel élément
tableau(i)=cdbl (correspondances(i).value)
Next

'fin
End Sub

sttt calculerImpot . . o
Function calculerImpot(byval marie,Byval enfants,Byval salaire, ByRef limites, ByRef

coeffR, ByRef coeffN)

http://tahe.developpez.com

" on calcule Te nombre de parts
Dim nbParts
If marie=true Then
nbParts=(enfants/2)+2
Else
nbParts=(enfants/2)+1

End If
If enfants>=3 Then nbParts=nbParts+0.5

' on calcule Te quotient familial et le revenu imposable

Dim revenu, qf
revenu=0.72*salaire
gf=revenu/nbParts

' on calcule 1'"impot

Dim i, impot

i-o

Do While i<ubound(Timites) And gf>limites(i)
i=i+1

Loop

calculerImpot=int(revenu*coeffr(i)-nbParts*coeffn(i))

End Function

Commentaires :

* dans le fichier texte data.txt, les valeurs peuvent étre séparées par un ou plusieurs
espaces, d'ou l'impossibilité d'utiliser la fonction split pour récupérer les valeurs de la

ligne. Il a fallu passer par une expression régulicre
* la fonction getData rend, outre les trois tableaux limites, coeffR, coeffN, un résultat

indiquant s'il y a eu erreur ou non. Ce résultat est un variant tableau de eux éléments. Le
premier élément est un code d'erreur (0 si pas d'erreur), le second le message d'erreur s'il

y a eu erreur.
* Ja fonction getData ne teste pas la validité des valeurs trouvées dans le fichier data.txt. En

situation réelle, elle devrait le faire.

http://tahe.developpez.com

70

	1 Introduction
	2 Les contextes d'exécution de VBSCRIPT
	2.1 Introduction
	2.2 Le conteneur WSH
	2.3 La forme d'un script WSH
	2.4 L'objet WSCRIPT
	2.5 Le conteneur Internet Explorer
	2.6 L'aide de WSH

	3 Les bases de la programmation VBSCRIPT
	3.1 Afficher des informations
	3.2 Ecriture des instructions dans un script Vbscript
	3.3 Écrire avec la fonction msgBox
	3.4 Les données utilisables en Vbscript
	3.5 Les sous-types du type variant
	3.6 Connaître le type exact de la donnée contenue dans un variant
	3.7 Déclarer les variables utilisées par le script
	3.8 Les fonctions de conversion
	3.9 Lire des données tapées au clavier
	3.10 Saisir des données avec la fonction inputbox
	3.11 Utiliser des objets structurés
	3.12 Affecter une valeur à une variable
	3.13 Évaluer des expressions
	3.14 Contrôler l'exécution du programme
	3.14.1 Exécuter des actions de façon conditionnelle
	3.14.2 Exécuter des actions de façon répétée
	3.14.3 Terminer l'exécution du programme

	3.15 Les tableaux de données dans un variant
	3.16 Les variables tableaux
	3.17 Les fonctions split et join
	3.18 Les dictionnaires
	3.19 Trier un tableau ou un dictionnaire
	3.20 Les arguments d'un programme
	3.21 Une première application : IMPOTS

	4 La gestion des erreurs
	4.1 Connaître le type exact d'une donnée
	4.2 Les expressions régulières
	4.3 Intercepter les erreurs d'exécution
	4.4 Application au programme de calcul d'impôts

	5 Les fonctions et procédures
	5.1 Les fonctions prédéfinies de vbscript
	5.2 Programmation modulaire
	5.3 Les fonctions et procédures vbscript
	5.3.1 Déclaration des fonctions et procédures vbscript
	5.3.2 Modes de passage des paramètres d'une fonction ou procédure
	5.3.3 Syntaxe d'appel des fonctions et procédures
	5.3.4 Quelques exemples de fonctions
	5.3.5 Paramètre de sortie ou résultat d'une fonction

	5.4 Le programme Vbscript de tri de valeurs
	5.5 Le programme IMPOTS sous forme modulaire

	6 Les fichiers texte
	6.1 Création et utilisation
	6.2 Les cas d'erreur
	6.3 L'application IMPOTS avec un fichier texte

